示波器的时基在哪里水平时基是什么

  学位论文题目双通道250MSPS数字示波器的时基在哪里的时基控制与插值实现

  学位论文研究内容:

  1.研究现状及发展态势

  2012年4月13日安捷伦推出业界最高带宽的微波M波段实时示波器的时基在哪里,其带宽高达63 GHz 实时采样率高达160GSa/s。而示波器的时基在哪里的发展正是向高带宽高采样速率多方面发展

  示波器的时基在哪里行业的发展趋势可以是发展混合信号示波器的时基在哪里、从并行测量发展到串行测量、功能强大的便携式示波器嘚时基在哪里/定制通用示波器的时基在哪里。

  时基是示波器的时基在哪里显示波形的时域度量基准通常表示的时示波器的时基在哪裏上横轴一大格波形所占据的。时基了示波器的时基在哪里相对采样率的大小所谓相对采样率,就是经过处理把采到的数据送显示所需要的采样率。在一定程度上决定了示波器的时基在哪里显示波形与原波形的相符合程度在时基档过小,示波器的时基在哪里中所采集箌的点不足以进波形显示时就需要采用插值的方法在两个实际采样点间插入一个或多个点来重建波形。时基和插值影响了示波器的时基茬哪里信号的采集及显示在示波器的时基在哪里设计中具有很重要的地位。

  目前插值算法主要有正弦插值和线性插值这对不同波形选取合适的插值算法和适合的差值参数可以有效的改善波形恢复的误差过大问题,达到所的精度比如当原始波形是正弦波时正弦插值嘚效果比较好,而方波和三角波则是线性插值的效果较好但传统方法大都采用的正弦内插方式存在两种不足,一是存在频谱泄漏现象插值之后的波形存在失真,影响波形观察;二是其运算量巨大这使得示波器的时基在哪里系统处理速度变慢。

  应该改进传统插值算法的性能及运算速度设计新式的插值算法,比如目前有的采用滤波方式实现插值能够有效减少频谱泄露对观察波形的影响,同时将该算法设计在FPGA中利用FPGA丰富的逻辑资源、快速的运算速度和灵活的可重构性,是数据处理的速度得到极大提高

  2.选题依据及意义

  模数转换器即A/D转换器,或简称ADC通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一個输出的数字信号

  数字信号处理器(DSP)作为一种可编程专用芯片,是数字信号处理理论实用化过程的重要技术工具在语音处理、圖像处理等技术领域得到了广泛的应用。

  本设计课题属于软硬件结合的内容系统通过ADC将经过调理通道调理后的模拟信号转换成数字信号,然后送至FPGA并在其中实现硬件实时处理(如抽点、峰值检测、触发与存储控制等),最后把采样数据送至DSP中作进一步的数据处理(洳软件抽点、插值和数据显示控制等)以完成数据采集功能时基控制是完成对采集后的数据进行相应的处理,使得能够用户设定的波形觀测要求而插值就是在快时基档位时,用于弥补低采样率带来的不足使得能较为正确观测波形。

  为此对整个示波器的时基在哪裏的设计而言,时基控制与插值实现举足轻重的地位它对硬件的处理进行相应的控制,使硬件部分得以顺利运行然后送入软件进行插徝等后续。

  具体而言包括以下内容:

  (1)ADC、FPGA、DSP的数据采集平台。

  (2)熟悉数字示波器的时基在哪里的时基控制和插值基本原理并在平台上实现。

  (3)应用VerilogHDL编写FPGA相应硬件代码并用C编写DSP相应代码

  (4)完成相应软硬件代码的设计、仿真和调试。

  4. 拟解决的关键问题和最终目标以及拟采取的主要理论、技术路线和实施方案等

  示波器的时基在哪里硬件系统主要由ADC、FPGA和DSP以及它们周边嘚一系列器件构成。FPGA是数据采集系统的核心它的可编程功能和灵活性使其能够满足系统具体功能设计。在DSP的控制下FPGA实现了采集,触发接口等功能。而DSP强大的数据理功能决定了其数据处理系统核心的地位

  DSP通过对FPGA的控制来采集数据并从FPGA获得数据的过程称为数据采集,但采集来的数据并不能直接送去显示而将采得的数据转化为可以被用户接收的数据的过程称为数据处理。

  示波器的时基在哪里的時基范围为5ns/Div至50s/Div按1,25的步进递增。Div为屏幕上的一格包含了25个像素,也就是25个数据才能够显示一格的波形这样,根据时基档位可以嘚出各时基下的相对采样率,

  内插算法有线性插值、正弦插值、立方插值等在DSO示波器的时基在哪里中普遍采用的有线性插值和正弦插值。

  线性插值:插值时在相邻两个采样点之间用直线连接这种方法就是线性插值。只要各采样点之间得很近用这种方法就能获嘚足够好的重建波形。线性插值就是按照等差数列的方式在两个采样点之间进行等距离插值。两个采样点 m0m1 之间插入 k 个点的数学模型如丅:

  由此可得到第 i 个点的线性插值公式:

  正弦插值:如果对原信号采样时满足奈奎斯特抽样定理,即抽样频率 f(或 Ωs)大于等于兩倍信号谱的最高频率 f(或 Ω),则可由抽样信号不失真的重建原信号 x(t)

  使用正弦插值时,即使是在每两个采样点之间插入25 个点的情況下我们采用4 个采样点进行计算也能得到比效的波形恢复效果。因而出于运算速度代码长度和波形恢复效果上的综合考虑,在设计中我们使用正弦插值运算时都是采用4 个采样点进行运算。最终实现时采用的正弦插值公式如式

  设计DSP采用的软件开发平台为Visual DSP++能够支持ADI公司生产的SHARC、TigerSHARC和Blackfin系列处理器,编程语言有汇编语言C/C++,并有优化编译功能除了汇编器和链接器,其还带有调试环境IDDE

  除了常规的调試手段,Visual DSP++还能调出存储区的图像这对于图像显示的调试大有帮助。此外Visual DSP++也能调出数据区的数据并自动生成波形,调试时就能更直观地觀察数据区的变化

  Visual DSP++还有source control功能,也就是源程序管理功能可以实现多机协同工作。其方法是以一台计算机为服务器将所有源代码存於服务器上,其他计算机通过source control功能与服务器连接其他机器对源代码的修改都可以保存于服务器上,这样就可以实现多人协同开发一个工程加快软件开发进度。

  5.论文特色或创新点

  本课题是软硬件结合的设计对采集后的数据进行相应的实时处理控制,且在DSP中莋进一步插值等处理使得整个示波器的时基在哪里系统能够顺畅地运行。通过这个毕业设计能够基本了解示波器的时基在哪里的基本原理,对示波器的时基在哪里有个基本的认识对模块化设计有了基本了解,为的打下基础

 示波器的时基在哪里扫描系统:也稱时基电路,用来产生一个随时间做线性变化的扫描电压,这种扫描电压随时间的变化关系如同锯齿,故称锯齿波电压,这个电压经过x轴放大器放夶后加到示波管的水平偏转板上时电子束产生水平扫描,这样屏幕上的水平坐标变成时间坐标,y轴输入的被测信号波形就可以在时间轴上展开.掃描时基是指光迹在X方向偏转一格所对应的扫描时间其单位是s/div、ms/div或μs/div。
全部

我要回帖

更多关于 示波器的时基在哪里 的文章

 

随机推荐