谁给我个蜀门ol不玩的和尚号 最好60+ 双修 保证不盗号 不惹事 只练级 能给的+Q 673744150或留言

文章摘要信息
生物物理学报&2011,&27(12)&998-1007&DOI:
&&10.3724/SP.J.998&&ISSN:&&CN:&11-1992/Q
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
主编特约/综述
服务与反馈
<INPUT type=hidden value="我在《生物物理学报》上发现了关于“膜蛋白|去污剂|结晶方法”几篇好文章,特向您推荐。请点击下面的网址:" name=neirong>
本文关键词相关文章
本文作者相关文章
膜蛋白结晶方法论述
范俊萍, 张凯
中国科学院生物物理研究所,北京100101
膜蛋白在细胞生命活动中承担各种重要功能,其基因数目约占整个基因组编码基因的30%,但已知的膜蛋白结构数目却只占整个蛋白质结构数据库的1%左右。近年来,膜蛋白逐渐成为结构生物学的研究热点,膜蛋白结构研究在重组蛋白表达、纯化和结晶等方向也出现了各种技术上的进步。本文简要论述了目前各种与膜蛋白结构研究相关的X-射线晶体学实验方法,主要包括膜蛋白样品制备、结晶方法等。膜蛋白结构研究是机遇与挑战并存的领域,随着经验的积累和技术的发展,这一领域正在吸引着越来越多的结构生物学工作者。
Methods of Crystallography Study on Membrane Proteins
FAN Junping, ZHANG Xuejun
Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Membrane proteins play key roles in many aspects of cell biology and account for nearly 30% of open reading frames in all known genomes. However, membrane proteins of known three dimensional structures composed only of about 1% of the current Protein Data Bank. Recent years, membrane proteins become a hot spot of the structural biology and have made considerable progress in recombinant expression, purification, and crystallization. In this review, we discuss methods that related to X-ray crystallography study on membrane proteins, including sample preparation and crystallization methods. Membrane protein structural biology is a rapidly developing research field full of challenges and opportunities and is attracting more and more structural biologists.
收稿日期&&修回日期&&网络版发布日期&&
DOI: 10.3724/SP.J.998
&973&计划项目()
通讯作者: 张凯,电话:(010),E-mail:zhangc@
作者Email: zhangc@
参考文献:
1. Shaw AZ, Miroux B. A general approach for heterologous membrane protein expression in Escherichia coli: The uncoupling protein, UCP1, as an example. Methods Mol Biol, : 23~35
2. Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L. Prediction of the human membrane proteome. Proteomics, 10(6):
3. White SH. Biophysical dissection of membrane proteins. Nature, 45): 344~346
4. Hubbard RE. Structure-based drug discovery and protein targets in the CNS. Neuropharmacology, 60(1): 7~23
5. Blundell TL. Structure-based drug design. Nature, 04 Suppl): 23~26
6. Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Biol, ): 980
7. Deisenhofer J, Epp O, Miki K, Huber R, Michel H. X-ray structure analysis of a membrane protein complex. Electron density map at 3&A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol, ): 385~398
8. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science, 60): 69~77
9. Miroux B, Walker JE. Over-production of proteins in Escherichia coli : Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol, ): 289~298
10. Nuc P, Nuc K. Recombinant protein production in Escherichia coli. Postepy Biochem, ): 448~456
11. Terpe K. Overview of bacterial expression systems for heterologous protein production: From molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, ): 211~222
12. White SH, von Heijne G. Transmembrane helices before, during, and after insertion. Curr Opin Struct Biol, ): 378~386
13. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW. Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA, ):
14. Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE. Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1Fo ATP synthase. FEBS Lett, ): 215~219
15. Jurgen B, Breitenstein A, Urlacher V, Buttner K, Lin H, Hecker M, Schweder T, Neubauer P. Quality control of inclusion bodies in Escherichia coli. Microb Cell Fact, ): 41
16. Fan J, Heng J, Dai S, Shaw N, Zhou B, Huang B, He Z, Wang Y, Jiang T, Li X, Liu Z, Wang X, Zhang XC. An efficient strategy for high throughput screening of recombinant integral membrane protein expression and stability. Protein Exp Purif, ): 6~13
17. Willis MS, Koth CM. Structural proteomics of membrane proteins: A survey of published techniques and design of a rational high throughput strategy. Methods Mol Biol, : 277~295
18. Qin H, Hu J, Hua Y, Challa SV, Cross TA, Gao FP. Construction of a series of vectors for high throughput cloning and expression screening of membrane proteins from Mycobacterium tuberculosis. BMC Biotechnol,
19. Mancia F, Love J. High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol, 21(4): 517~522
20. Groisillier A, Herve C, Jeudy A, Rebuffet E, Pluchon PF, Chevolot Y, Flament D, Geslin C, Morgado IM, Power D, Branno M, Moreau H, Michel G, Boyen C, Czjzek M. MARINE-EXPRESS: Taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms. Microb Cell Fact,
21. Lundstrom K. Structural genomics on membrane proteins: Mini review. Comb Chem High Throughput Screen, ): 431~439
22. Prive GG. Detergents for the stabilization and crystallization of membrane proteins. Methods, ): 388~397
23. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods, 7(12):
24. Zhang P, Wang J, Shi Y. Structure and mechanism of the S component of a bacterial ECF transporter. Nature, 468(7324): 717~720
25. Sonoda Y, Newstead S, Hu NJ, Alguel Y, Nji E, Beis K, Yashiro S, Lee C, Leung J, Cameron AD, Byrne B, Iwata S, Drew D. Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure, ): 17~25
26. Postis VL, Deacon SE, Roach PC, Wright GS, Xia X, Ingram JC, Hadden JM, Henderson PJ, Phillips SE, McPherson MJ, Baldwin SA. A high-throughput assay of membrane protein stability. Mol Membr Biol, ): 617~624
27. Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC. Microscale fluorescent thermal stability assay for membrane proteins. Structure, ): 351~359
28. Fan J, Huang B, Wang X, Zhang XC. Thermal precipitation fluorescence assay for protein stability screening. J Struct Biol, 175(3): 465~468
29. Le Maire M, Kwee S, Andersen JP, Moller JV. Mode of interaction of polyoxyethyleneglycol detergents with membrane proteins. Eur J Biochem, ): 525~532
30. daCosta CJ, Baenziger JE. A rapid method for assessing lipid: Protein and detergent: Protein ratios in membrane- protein crystallization. Acta Crystallogr D Biol Crystallogr, 2003, 59(Pt 1): 77~83
31. Eriks LR, Mayor JA, Kaplan RS. A strategy for identification and quantification of detergents frequently used in the purification of membrane proteins. Anal Biochem, ): 234~241
32. Noy D, Calhoun JR, Lear JD. Direct analysis of protein sedimentation equilibrium in detergent solutions without density matching. Anal Biochem, ): 185~192
33. Ohlendieck K. Removal of detergent from protein fractions. Methods Mol Biol, : 295~300
34. Ostermeier C, Michel H. Crystallization of membrane proteins. Curr Opin Struct Biol, ): 697~701
35. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 &A resolution. Nature, 80): 287~292
36. Caffrey M, Cherezov V. Crystallizing membrane proteins using lipidic mesophases. Nat Protoc, ): 706~731
37. Wohri AB, Johansson LC, Wadsten-Hindrichsen P, Wahlgren WY, Fischer G, Horsefield R, Katona G, Nyblom M, Oberg F, Young G, Cogdell RJ, Fraser NJ, Engstrom S, Neutze R. A lipidic-sponge phase screen for membrane protein crystallization. Structure, ):
38. Faham S, Bowie JU. Bicelle crystallization: A new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol, ): 1~6
39. Newstead S, Ferrandon S, Iwata S. Rationalizing alpha-helical membrane protein crystallization. Protein Sci, ): 466~472
40. Hong WX, Baker KA, Ma X, Stevens RC, Yeager M, Zhang Q. Design, synthesis, and properties of branch-chained maltoside detergents for stabilization and crystallization of integral membrane proteins: Human connexin 26. Langmuir, ):
41. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods, ):
42. Fry EH, Qin W, Fleck EN, Judge RA, Chiu ML. Improved protein crystal detection in detergent and lipidic meso-phases. Open Struct Biol J, ~15
43. Arnold T, Linke D. The use of detergents to purify membrane proteins. In: Curr Protoc Protein Sci, 2008, Chapter 4: Unit 4.8.1-4.8.30
44. Kaufmann TC, Engel A, Remigy HW. A novel method for detergent concentration determination. Biophys J, ): 310~317
45. Bond PJ, Faraldo-Gomez JD, Deol SS, Sansom MS. Membrane protein dynamics and detergent interactions within a crystal: A simulation study of OmpA. Proc Natl Acad Sci USA, ):
46. Rummel G, Hardmeyer A, Widmer C, Chiu ML, Nollert P, Locher KP, Pedruzzi II, Landau EM, Rosenbusch JP. Lipidic cubic phases: New matrices for the three-dimensional crystallization of membrane proteins. J Struct Biol, ): 82~91
47. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 54):
48. Pebay-Peyroula E, Neutze R, Landau EM. Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: Towards resolving a revolving photocycle. Biochim Biophys Acta, (1): 119~132
49. Gordeliy VI, Schlesinger R, Efremov R, Buldt G, Heberle J. Crystallization in lipidic cubic phases: A case study with bacteriorhodopsin. Methods Mol Biol, : 305~316
50. Nollert P. Lipidic cubic phases as matrices for membrane protein crystallization. Methods, ): 348~353
51. Misquitta Y, Caffrey M. Detergents destabilize the cubic phase of monoolein: Implications for membrane protein crystallization. Biophys J, ):
52. Nollert P, Landau EM. Enzymic release of crystals from lipidic cubic phases. Biochem Soc Trans, ): 709~713
53. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science, 38): 255~261
54. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. Structure of bacteriorhodopsin at 1.55 &A resolution. J Mol Biol, ): 899~911
55. Wadsten P, Wohri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engstrom S. Lipidic sponge phase crystallization of membrane proteins. J Mol Biol, ): 44~53
56. Domanska K, Vanderhaegen S, Srinivasan V, Pardon E, Dupeux F, Marquez JA, Giorgetti S, Stoppini M, Wyns L, Bellotti V, Steyaert J. Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2- microglobulin variant. Proc Natl Acad Sci USA, ):
57. Korotkov KV, Pardon E, Steyaert J, Hol WG. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure, ): 255~265
58. Lam AY, Pardon E, Korotkov KV, Hol WG, Steyaert J. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J Struct Biol, ): 8~15
59. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK. Structure of a nanobody-stabilized active state of the &2 adrenoceptor. Nature, 29): 175~180
60. Dutzler R, Campbell EB, MacKinnon R. Gating the selectivity filter in ClC chloride channels. Science, 16): 108~112
61. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC. Structure of an agonist-bound human A2A adenosine receptor. Science, 27): 322~327
本刊中的类似文章
by 生物物理学报扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
【SY石油标准大全】syt -2008 生产测井下井仪系列通用技术条件 第1部分:产出剖面
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口文章摘要信息
生物物理学报&2011,&27(2)&99-107&DOI:
&&&&ISSN:&&CN:&11-1992/Q
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
服务与反馈
<INPUT type=hidden value="我在《生物物理学报》上发现了关于“镜像神经系统|顶额镜像回路|动作理解”几篇好文章,特向您推荐。请点击下面的网址:" name=neirong>
本文关键词相关文章
本文作者相关文章
灵长类镜像神经系统研究的最新进展
浙江大学心理与行为科学系、物理系交叉学科实验室,杭州 310028
近年来,镜像神经系统成为认知神经科学的研究热点。神经生理学和脑成像的相关研究表明,镜像神经系统以运动为基础,统一了动作观察和动作执行的神经机制,为理解他人动作提供了来自&内部&的支持。镜像神经系统为个体间的自然交流提供了神经基础,具有深远的进化意义。它不仅存在于灵长类,甚至在进化距离较远的物种(如沼雀和斑雀)中也有发现。作者在综述最新相关研究的基础上,分别介绍了猴和人类镜像神经系统的生理基础和认知功能,并对前人实验中的遗留问题做了总结和展望。
Advances in Studies of Primate Mirror Neuron System
Department of Psychology and Behavioral Sciences, Bio-X Laboratory in Department of Physics, Zhejiang University, Hangzhou 310028, China
Mirror neuron system has recently attracted more and more interests in the field of cognitive neuroscience. Studies using neurophysiological and brain-imaging techniques have suggested that such motor-based system provides a basic mechanism that unifies action execution and action perception. This mechanism comprises a neural basis for understanding goal-orientated actions of others from the inside. Mirror neuron system seems to be a primary and natural way whereby individuals communicate with one another. It is found not only in primates, but also in evolutionarily distant species, such as swamp sparrows and zebra finches. This paper reviews the latest progress about the mirror neuron system and discusses its physiologic basis and cognitive function in primates and human beings in detail. Finally, several questions for future research derived from previous studies have also been suggested.
收稿日期&&修回日期&&网络版发布日期&&
国家自然科学基金项目(),中央高校基本科研业务费专项资金
通讯作者: 姚远,电话:(1,E-mail:lisayuan@
作者Email: lisayuan@
参考文献:
1. Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: A neurophysiological study. Exp Brain Res, ): 176~180
2. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. Brain, : 593~609
3. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Cogn Brain Res, ): 131~141
4. Platek M, Keenan J, Shackelford K. Evolutionary cognitive neuroscience. Cambridge, US: The MIT Press, 2006
5. Rizzolatti G, Craighero L. The mirror neuron system. Ann Rev Neurosci, 9~192
6. Rizzolatti G, Sinigaglia C. The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nat Rev Neurosci, ): 264~274
7. Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci, ): 661~670
8. Rizzolatti G, Fogassi L, Gallese V. Mirrors in the mind. Sci Am, ~61
9. Cattaneo L. Impairment of actions chains in autism and its possible role in intention understanding. Proc Natl Acad Sci USA, :
10. Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban GA. Observing others: Multiple action representation in the frontal lobe. Science, : 332~336
11. Belmalih A, Borra E, Gerbella M, Rozzi S, Luppino G. Connections of architectonically distinct subdivisions of the ventral premotor area F5 of the macaque. 37th Annual Meeting of the Society for Neuroscience, 2007
12. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Common mechanisms in perception and action: Attention and performance. Atten Perform, 5
13. Rozzi S. Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cereb Cort, 89~1417
14. Borra E. Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cort, 94~1111
15. Rizzolatti G, Luppino G. The cortical motor system. Neuron, 9~901
16. Jellema T, Baker CI, Wicker B, Perrett DI. Neural representation for the perception of the intentionality of actions. Brain Cogn, 0~302
17. Umilta MA. I know what you are doing: A neurophysiological study. Neuron, ~101
18. Caggiano V, Fogassi L, Rizzolatti G, Thier P, Casile A. Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. Science, : 403~406
19. Byrne RW. The thinking ape. Evolutionary origins of intelligence. Oxford, UK: Oxford Univ Press, 1995
20. Tomasello M, Call J. Primate cognition. Oxford, UK: Oxford Univ Press, 1997
21. Whiten A, Ham R. On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. Adv Stud Behav, 9~283
22. Kohler E. Hearing sounds, understanding actions: Action representation in mirror neurons. Science, : 846~848
23. Grezes J, Armony JL, Rowe J, Passingham RE. Activations related to &mirror& and &canonical& neurones in the human brain: An fMRI study. Neuroimage, 8~937
24. Buccino G. Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, ): 323~334
25. Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single subject analyses of unsmoothed fMRI data. Cereb Cort, 39~1255
26. Kalaska JF, Crammond DJ. Deciding not to go: Neuronal correlates of response selection in a go/nogo task in primate premotor and parietal cortex. Cereb Cort, 0~428
27. Crammond DJ, Kalaska JF. Prior information in motor and premotor cortex: Activity during the delay period and effect on pre-movement activity. J Neurophys, 6~1005
28. Filimon F, Nelson JD, Hagler DJ, Sereno ML. Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery. Neuroimage, 15~1328
29. Baldissera F, Cavallari P, Craighero L, Fadiga L. Modulation of spinal excitability during observation of hand actions in humans. Eur Neurosci, ): 190~194
30. Gazzola V, Rizzolatti G, Wicker B, Keysers C. The anthropomorphic brain: The mirror neuron system responds to human and robotic actions. Neuroimage, 74~1684
31. Gazzola V. Aplasics born without hands mirror the goal of hand actions with their feet. Curr Biol, 35~1240
32. Hamilton AFC, Grafton ST. Action outcomes are represented in human inferior frontoparietal cortex. Cereb Cort, 60~1168
33. Cattaneo L, Caruana F, Jezzini H, Rizzolatti G. Representation of goal and movements without overt motor behavior in the human motor cortex: A TMS study. J Neurosci, 134~11138
34. Gallese V, Goldman A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci, 3~501
35. Fogassi L, Ferrari PF, Gesierich B. Parietal lobe: From action organization to intention understanding. Science, : 662~667
36. Iacoboni M. Grasping the intentions of others with one's own mirror neuron system. PLOS Biol, 9~535
37. Kilner JM, Friston KJ, Frith C. The mirror-neuron system: A Bayesian perspective. NeuroReport, ): 619~623
38. Dinstein I, Thomas C, Behrmann M, Heger DI. A mirror up to nature. Curr Biol, 2008, 18: R13~R18
39. Csibra G. Action mirroring and action understanding: An alternative account. In: Haggard P, Rosetti Y, Kawato M. Sensorimotor foundations of higher cognition. Attention and performance XII. Oxford: Oxford University Press, 9
本刊中的类似文章
by 生物物理学报

我要回帖

更多关于 蜀门青城匕首加点 的文章

 

随机推荐