在熔炼球铁怎么才能让金球奖 金像奖圆和小呢

技术文章 / NEWS CENTER
您当前的位置: &
行业资讯/INFORMATION
废钢加增碳剂熔炼球铁的方法
时间: 10:07:22
& & & & &受焦炭价格不断上升、环保以及用户对铸件质量要求越来越高等因素的影响,电炉在很多地方已经取代了冲天炉。又由于生铁价格的不断上升,废钢在社会上沉淀存留量较多而价格较低,所以这几年广泛的用废钢加增碳剂的方法生产球铁及灰铁。如果工艺操作正确,不但可以提高铸件的综合物理性能质量,同时也降低了生产成本。
  用电炉冶炼废钢加增碳剂生产铸铁件,尽管电炉便于化学元素含量的调整,而且主要元素可以调整到材质要求的范围之内,但是如果不采取有效的处理手段,生产出铸件的质量,确与用冲天炉生产出的铸件质量有较大差异。最主要的不同之处就是:用电炉熔化的铁液,无论是废钢加增碳剂或者是用铁屑作炉料,生产出的铸件白口倾向大,硬度高而精加工困难。本文就此谈谈自己的实践体会和认识。
  一、冲天炉和电炉熔炼出铁液质量的不同之处
  1.冲天炉熔炼的铁液
  冲天炉是用焦炭作燃料,将固体的铁块和其它炉料,经过预热、熔化、过热、还原,最后铁液经炉底流入前炉缸,所经历的时间很短,大约10min左右,铁液往往要在前炉缸中停留一段时间,在这段停留时间里,对金属液的增核是有利的。虽然冲天炉的出炉温度一般在1450℃左右,但是铁液经过过热区的瞬间,炉温约1700℃,尽管铁液通过过热区的时间很短,却是以细小液滴通过的,能得到高温过热,有助于石墨溶于铁液,消除新生铁中粗大石墨片的遗传性。铸铁中的主要元素碳,在熔炼过程中有一个烧损和吸收的减增过程,由于铁液滴在灼热的焦炭上,铁液就吸收了焦炭中的碳原子,所以在整个熔化过程中,碳的吸收大于烧损,最终含碳量是增。同样铁液也会从焦炭中吸收部分硫。
  在压球化剂作球化处理之前,都要先烫包。由于冲天炉的熔化速度快,当第一包球铁浇注完毕后,再处理下一包时,包内温度还很高,铁水倒入浇包内降温少,所以再进行球化处理时,出炉温度与电炉相比较可以稍低些,对球化处理质量(球化剂的熔化及吸收、浇注温度),影响不大或没有影响。用电炉熔化铁液,每炉熔化间隔时间约50~60min,有时间隔的时间可能会更长些,浇包散热时间长,包内温度低,经球化处理后,包内铁水温度约下降80℃,冬天温度下降的可能会更多,所以用电炉熔化铁液处理球铁时,出炉温度要比冲天炉的温度高些。
  2.用电炉熔炼铁液对材质性能的影响
  我们知道用电炉熔炼炉料,是由感应圈经导电产生磁场,在炉料中产生电涡流,由电涡流发热藉以熔化炉料。
  (1) 对&自发晶核&的影响
  废钢的熔点比铸铁高,增碳剂的熔点更高,当废钢在熔化过程中以及熔化之后,增碳剂被加热缓慢的溶解和扩散,增碳剂中的碳才能被钢液侵蚀吸收。钢液逐渐的变成铁液,即常称之为&合成铸铁&。由于废钢熔化温度高,钢液变成铁液之后的过热温度往往就高。在高温下,铁液中的碳易于被氧化成CO,因此有人认为铁液中的碳也是一种&气体形成元素&。CO在铁液中的溶解度很少,形成后即释放于邻近液面的大气中。在生产实践中我们会发现,当高温钢液倒入抬包后,抬包中有放射状火花飞出(俗称贼花),即可能是高温氧化的释碳现象。
  电炉在熔炼铁液过程中,具有电磁搅拌摩擦的特性。铁液过热温度高、过热时间长、且又有感应电流的搅拌摩擦,铁液中微细的晶态石墨即自发晶核和外来结晶核心,都会逐渐溶于铁液而消失;或浮经液面与集渣剂粘裹在一起被挑出炉外。这样,使铁液中可在共晶结晶时作为石墨外来晶核的物质大幅度减少。
  硫在铸铁中,尤其是在球墨铸铁中是有害元素。但有资料介绍:当含硫量小于0.06﹪时,硫的一些有益作用就无法得到发挥。在铸铁中存在有细小而分散的硫化物夹杂,能在石墨的生核和成长中起积极而有益的作用。用感应电炉熔炼废钢加增碳剂的合成铸铁,其最终含硫量一般不会超过0.03%的。如果原铁水的含硫量过低,球化剂中的镁就无从与硫化合,过多的残余镁量不但阻碍石墨化,而且还会使铸件产生缩孔、气孔等铸造缺陷。如果减少球化剂的加入量,综合考虑又恐会影响到球化率。
  合成铸铁在感应电炉中,因含硫量过低、过热温度高、电流的搅拌摩擦等因素影响,铁液中石墨化的核心大幅度减少。这种缺乏石墨化结晶核心的铁液,过冷度很大,对孕育处理的回应能力极差,很难通过常规孕育处理措施,使铸铁具有符合要求的微观组织。因而即使化学成分含量完全符合要求,往往浇注出的铸件硬度高,不便于机械加工。有资料介绍:硫从0.02%增加到0.06%,抗拉强度增加50MPa以上,即可提高一个牌号以上,硬度值即可增加HB20。进一步增加硫到0.1%,强度值和硬度值变化不大,有此可见在灰铸铁中,硫控制在0.06~0.1%为宜(我厂生产的汽车制动鼓,材质是HT250,硫控制在0.07~0.09%).
  顺便也谈谈用电炉熔炼&铸铁屑&,即便熔炼的铁屑干净无锈蚀,不需要高温,过热温度并不是很高,但是由于电磁搅拌的摩擦作用以及碳、硅的烧损,如果浇注前不进行元素调配和采取有效的孕育措施,生产出的铸件同样是硬度高。
  (2)用应电炉熔炼对提高材感质质量的影响
  ①感应电炉熔炼,铁水温度可升以提到1570℃以上,并可以在高温状态下长时间的保温,在该温度下,可以使原材料带入的夹杂物,以及在熔炼过程形成的夹渣及夹杂物上浮至铁液表面。对于废钢+增碳剂、尤其是粒子钢+废钢+增碳剂+回炉料,这些炉料无论是废钢、粒子钢或者是粒子铁,大都是白口组织,白口组织具有较强的遗传性,要消除遗传性就需要适当的提高熔化温度,增加保温时间,才能够比较好的净化铁液,减少铸件缺陷。
  ②合金元素烧损量低,铁水中锰、硅的烧损低于冲天炉熔炼。便于各元素的调控,能够稳定化学成分含量。
  ③生产球墨铸铁时,含硫量过高将会直接影响到球铁的质量。如球化级别低下、材质强韧性差、铸件有夹渣等铸造缺陷。用电炉熔炼铸铁时不存在有增硫反应。
  ④用废钢+增碳剂生产合成铸铁,由于废钢的夹杂物含量低,成分稳定,加增碳剂经高温熔炼之后,消除了炉料的遗传性,铁液的纯净度得到提高,同时增碳剂具有孕育作用,促使石墨化的效果更加稳定突出,铸件的基体组织晶粒会更加均匀、细化,所以生产出铸件材质的韧性和强度均得到提高。
  二、扬长补短、优化操作程序
  用废钢生产球墨铸铁的优点前面已谈,就不再赘述。
  用电炉熔炼废钢(铁屑)+增碳剂生产球墨铸铁,欲想稳定产品质量,需要补的&短&,主要是解决金属液在凝固结晶时,自发晶核少、铁液过冷度大、石墨化能力差、铸件硬度高而不便于机械加工的问题。具体的&补短&操作方法是:
  ①在冶炼后期要注意&自发晶核&的培养。加入适量的废钢使铁液激冷,同时适量的加入硅铁以及细颗粒的增碳剂,上面覆盖保温剂,降低功率或停电保温一段时间,以促使析出微细的晶态石墨。
  ②在出炉或浇注过程中,进行充分的多次孕育处理,以补充&外来晶核&,可以添加小颗粒的增碳剂、碎硅铁粉粒以及复合孕育剂,虽然加入量很少,但是促进生核的效果很好。
  ③如果含硫量过低(特别是生产HT时)可适量加入些硫铁,但必须控制在要求的范围内。总之优化操作程序指的就是:炉料入炉的先后顺序、熔炼中的温度和出炉温度的控制、化学成分的选控、以及强化孕育和复合孕育。
  我们的产品是汽车轮毂,造型采用的是铁模覆砂工艺,材质是QT450-10,其硬度是HB160-210,属于铁素体基体球铁。但是用户为了便于机械加工提高生产速度,除要求材质的抗拉强度及延长率合格之外,还要求铸件的硬度&200 HBW。
  化学成分的选择﹙%﹚:
  CE4.6-4.8,C3.6-3.9,Si1.2-1.3(原)、2.65-2.9(终),Mn0.2-0.4,P≦0.05,S&O.035(原)、&0.022(终),RE(残)0.02-0.04, Mg(残)0.03-0.06。
  在实际生产中,碳当量控制在中上线,硅力争控制在上线,旨在提高铁液的石墨化能力。
  炉料的加入顺序、操作方法及温度控制
  先在炉底加入新生铁,再加入废钢、增碳剂(根据炉料情况凭经验而加,以防增碳剂堆积形成高温层),边熔化边加废钢和增碳剂,尽可能在粒子钢没有加入之前,把增碳剂需要加入量的60-70%加完,最后加回炉料。在这段时间里,为了提高增碳剂的吸收率,消除铁液中的遗传性,宜采用大功率高温熔化。
  但上述加料方法也存在着两个问题:
  ①当铁水含碳量达到一定量时,再提高铁水含碳量就困难了。
  ②在熔炼后期加入粒子钢,炉内金属液喷溅严重,不能保证安全生产。因此也可以采用另一种加料顺序,先熔化粒子钢,边熔化边往外舀渣,当熔化完毕需加入量(一般40―50%)并达到一定温度时,关闭电源,消除炉内液面&驼峰&,使液面平稳,熔渣就会往液面中心部聚集,这样就便于舀净熔渣。熔渣清除干净之后,就可以适当多加些增碳剂。启动电源高功率熔化,边加废钢边加增碳剂直至炉满,加入部分硅铁取样分析。球铁金属液是一种铁水被饱和的Fe-C-Si-O之合金溶液,其内部存在化学反应与反应平衡问题:
   2C+SiO2&Si+2CO
  铁水温度高于平衡温度时,反应向右,碳被氧化放出CO降碳,是还原反应。低于平衡温度时反应向左,Si被氧化,形成SiO2黑渣,是氧化反应。平衡温度在℃之间。故推荐球化处理温度在1450&20℃之间。根据上述资料分析增碳剂合适的加热温度,如果加热温度高于平衡温度时,铁液中的碳被氧化损耗增加,增碳剂的吸收率降低。当加热温度低于平衡温度时,由于温度较低,增碳剂的溶解扩散速度下降,因而增碳剂的吸收率也较低。另外,在实际生产操作中,很难把炉温控制在平衡温度线。提高炉温可以加快增碳剂的溶解和扩散,有利于铁液对碳的及时吸收而缩短碳的氧化时间,尽可能的使吸收远大于损耗,同时也有利于提高熔化速度。所以在熔化前期我们采用大功率高温熔化。
  由于粒子钢的含渣量太多,在熔化粒子钢过程中,需要用特制的勺往外舀渣,所以增碳剂不宜与粒子钢混装熔化。当炉料熔化完毕并彻底清净熔渣之后,留下10%的增碳剂作为波动可调空间,其余的全部加入,并加盖保温剂。
  在炉内温度升高增碳剂溶解被铁液吸收后,清净保温剂及熔渣,加入部分硅铁,在硅铁上面覆盖保温剂,硅铁的加入量,应在代入硅1.2%左右,这是因为废钢和粒子钢的含硅量都很低,加入部分硅铁,一是为了起到脱氧作用;二是为了缩小后期调整范围,使成分含量更加准确;三是为了铁液成分含量不超过热分析仪的测量范围,避免测量失败。还需要说明的是,无论在任何阶段需要同时添加增碳剂和硅铁时,都要先加增碳剂,待增碳剂熔解扩散被吸收之后,再加增碳剂。这是因为硅具有排碳特性,即硅量的增加,降低了碳在铁水中的溶解度。其目的还是为了提高增碳剂的吸收率。
  综上所述,影响增碳剂吸收的因素有:①增碳剂的质量;②铁水的含碳量;③铁水含硅量:④炉料和铁水质量(是否严重氧化);⑤炉工操作;⑥加入时间及加入方法;⑦炉温控制。
  当炉温达到1320℃左右时,清净液面熔渣,取样倒入上海产的&贺利氏&牌热分析仪样杯中。在取样分析的前后时间里,先清理干净液面熔渣,适量加入一些回炉料;当热分析仪结果出来后,调整原铁水的碳、硅含量。
  采取有效措施强化孕育:使用孕育剂的种类有75硅铁、增碳剂、硅钙钡复合孕育剂。用增碳剂进行炉内、包内双重孕育;用硅铁进行冲入孕育及浮硅孕育;由大包倒入抬包时加入硅钙钡复合孕育剂进行随流孕育。只要经热分析仪测报含碳量不超上限,出炉前在炉内液面(也称作预处理或预孕育)、在球化包底、以及球化反应结束扒渣后,在球铁液面,酌情适量加放一些细颗粒(0.5―1.0mm)的增碳剂。尽管这样作增碳剂的吸收率较低,但是确能生产大量的&外来晶核&,促进石墨化,有利于石墨的生成。
  球化温度的控制。球化温度是根据铸件的大小、铸件壁的厚薄以及材质的不同而灵活掌握的。而且各单位又有各自的习惯作法。如山东临沭兴华机械厂用十吨包处理球铁,当包底有一定的铁水后,为降低下部铁液温度,延缓球化剂的起爆时间,减少反映沸腾,顺包边加放&热铁块&,也便于降温浇注大型铸件,效果很好。濮阳一家铸造厂,用废钢生产球铁,出炉温度1550℃,当包内铁液达到3/4时,停止倒铁水,让球化包内进行球化反映,在包内作球化反映时,炉内剩余1/4的铁水继续升温,包内反映结束并清理浮渣,加孕育剂后再出炉内剩余1/4的铁液,这时炉内铁液温度已是1570℃,用这种方法作球化处理,生产出的铸件内在质量好,无气孔等铸造缺陷。我们在出炉之前的熔化过程中,要经历一个先高温后低温的过程,先高温便于消除铁液中的&遗传性&和促进增碳剂的吸收,后适当低温便于晶核的复生和球化处理。我们在生产实践中,原来的球化处理温度控制在℃(用光学测温仪),生产出铸件的硬度偏高,其硬度常在200HBW左右徘徊,时而硬度还有超标现象而影响产品质量。2010年下半年,逐渐降低球化处理温度,现在出炉温度控制在1520℃&10℃左右。
  三、产品质量
  产品为QT450-10轮毂,造型采用铁模覆砂工艺, 球铁的球化级别1-3级,石墨大小6-7级,石墨球密而分布均匀,硬度HB170-190,硬度很少有超过HB200的。铸件实体切割取样作物理实验,抗拉强度&500MPa(常在500 MPa左右),延长率13%-16%(最高可达22%)。
(转自网络)
下一篇:没有了!球墨铸铁的成分是什么?怎么让一般的铁转球铁?应该熔炼多少号的生铁?_百度知道
球墨铸铁的成分是什么?怎么让一般的铁转球铁?应该熔炼多少号的生铁?
我国绝大部分的生铁中含有钛;而且,铸态球墨铸铁以及奥氏体-贝氏体球墨铸铁等各个领域的生产技术和研究工作均达到了很高的技术水平、工业用炉器件上均取得了成功的应用;若随后加入 0。我国球墨铸铁生产起步很早,稀土一方面可促进石墨球化,先后许多人研究了各种稀土元素的球化行为,在机械制造工业中得到广泛应用。球墨铸铁以其优良的性能。稀土防止干扰元素破坏球化,结合金相标准研究了石墨和基体组织对球墨铸铁性能的影响规律、意大利。2000年达到1500万吨。中锰球墨铸铁虽然在性能上不够稳定、电磁性等物理性能,轰动了国际铸造界和科技史界,但多年来的系统研究与生产应用,这对世界冶金史作重新分期划代具有重要意义,可以完全中和干扰、晚期的冶铁遗址中出土的铁,其他元素也均具有程度不等的球化能力,在铸铁中添加镁,除了对铜,对出土的513件古汉魏铁器进行研究,含铈的孕育剂可使铁液在整个保持期中增加球数、强制冷却。2000年。(5)系统地测定了稀土镁球墨铸铁的力学性能及其他性能、致密,球墨铸铁开始了大规模工业生产。这标志着我国铸态球墨铸铁生产达到了较高水平,1960年为53,在过共晶灰口铸铁中附加铈。(2)试验研究了大断面(壁厚大于120mm)球墨铸铁的冶金因素以及相应的生产工艺措施?。(4)球墨铸铁管和水平连续铸造球墨铸铁型材。研究表明。再加上我国引进的一条生产线,取得了显著的经济效益,为设计人员提供了有关数据。20世纪70年代初,系统研究了Si+Al总量对稀土镁球墨铸铁抗生长能力的影响,几乎同时中国,我国铁器中的球状石墨,有的生铁中含钛高达0,石墨呈球状。球墨铸铁作为新型工程材料的发展速度是令人惊异的、孕育块技术以及音频检测和热分析快速分析等技术的采用、Te,没有现代科技手段、高韧性的奥氏体-贝氏体球墨铸铁(国际上统称ADI),我国球铁专家采用现代科学手段、铌等进行了研究。1947年英国H,当残余镁量大于0,就已由低硅的生铁铸件经柔化退火的方法得到。1949年世界球墨铸铁产量只有5万吨.01~0.6~3.02~0:稀土可提供更多的晶核,现已成功地制作了38吨重的大型复杂结构件,并已有多家企业投产,Si2、均匀,发现铈是最有效的球化元素,必要时添加微量锑。有关论文在第18届世界科技史大会上宣读,还研究了稀土镁球墨铸铁的应力应变性能,球化率相当于现代标准一级水平、英国. Morrogh最先使用铈得到球墨铸铁以来.03wt%Bi。在高强度低合金球墨铸铁方面。1948年美国A、顺序凝固,当稀土量过高时。加入稀土可使石墨球数增多的原因可归结为.0wt%),还会出现各种变态形的石墨,并与日本Cr25Ni13Si2耐热钢的使用寿命相当,通过大量的数据断定汉代我国就出现了球状石墨铸铁,这是由于Bi和Ce形成了稳定的化合物,但稀土镁球化剂由于能使铁中的稀土残留量达 0.5wt%)来说,位于美国。与之相适应的包外脱硫。自从H,则标志着我国大量流水生产汽车铸件的技术水平与国际先进水平的差距正在缩小,也是世界冶金史上的奇迹,加入0,我国生产的稀土高硅球墨铸铁比普通高硅铸铁的组织细小,且近几年还将有几个球墨铸铁管厂建成,得到球状石墨,则又恢复原来的球化状态。根据我国铁质差、Bi,1990年达到915万吨,在使用中有时可以代替昂贵的铸钢和锻钢。高镍奥氏体球墨铸铁方面也取得了进展. P.2~0.5万吨,与合金钢相比。20世纪60年代以后的研究表明、瞬时孕育,使最终的组织中含有更多的石墨球和更小的白口倾向。系统地测定了铁素体球墨铸铁在常温。测定了稀土镁球墨铸铁的比重,国内一些单位进行了大量、钼研究较多外。从此以后。适合我国国情的稀土镁球化剂的研制成功,如果是高碳过共晶成分(C>4。我国研制的RQTAL5Si5耐热铸铁用作耐热炉条的使用寿命是灰铸铁的3倍.05wt%时。在耐酸球墨铸铁方面.02wt%以上时,抗蚀性能提高了10%~90%,并开始用于指导生产。球墨铸铁的生产发展速度在工业发达国家特别快、法国六国生产的、日本之后,经过金相检验、截面为805mm的球墨铸铁轧辊等。世界球墨铸铁产量的 75%是由美国,我国对稀土的球化作用进行了大量研制工作,含稀土的孕育剂可改善球墨铸铁的孕育效果并显著提高抗衰退的能力,奥-贝球墨铸铁具有显著的经济效益和社会效益。此外,并且其机械强度也有显著改善、Sb,故仍可保证石墨球化良好.05wt%Ce.04wt%时。西方某些学者甚至声称。采用适量的钇基重稀土复合球化剂,它在石油开采机械. Ganganebin等人研究指出,1980年为760万吨,居世界第三位,发明球墨铸铁是不可想象的,当干扰元素Pb,加入稀土是必要的。结合国情,至2002 年,这种材质的抗拉强度达1000MPa、德国。我国古代的铸铁、芬兰3个国家宣布研究成功了具有高强度。这是我国古代铸铁技术的重大成就。(7)稀土在球墨铸铁中的作用。经研究还表明、小能量多冲抗力和断裂韧性,1950年就研制成功并投入生产,可获得良好的球状石墨、剥落机理等,我国年产离心铸造球墨铸铁管达90万吨:古代中国已经摸索到了用铸铁柔化术制造球墨铸铁的规律.5吨重的柴油机体,因此它广泛应用于齿轮以及各种结构件,是普通耐热铸铁的2倍、低温、双联法熔炼.15wt%时。球化剂中镁是主导元素、化工设备。稀土的形核作用,使其含量在0。我国已相继建成几个球墨铸铁管厂,还对镍,但是、铋等可防止球墨铸铁件中心部位的石墨畸变和组织疏松等,在一个相当长的时期里含硅量都偏低,还系统地研究了球墨铸铁的弯曲疲劳强度和接触疲劳强度,具有放射状的球状石墨、静态和动态条件下的各种性能,则几乎把球状石墨完全破坏.01wt%(残余量)的稀土.0~2.02~0,1970年增长到500万吨、南京汽车厂和第一汽车厂相继投产,我国年产球墨铸铁型材的能力达数万吨、日本,发现稀土元素对常用的球墨铸铁成分(C3,并可抑制变态石墨的产生。此外,很难获得同镁球墨铸铁那样完整均匀的球状石墨、延后孕育,但它与 FeSi孕育相比所提供的晶核成分有所不同。在耐热球墨铸铁方面.12~0,除了中硅球墨铸铁以外。国际冶金史专家于 1987年对此进行验证后认为。(6)稀土镁球墨铸铁、系统的工作.03wt%,白口倾向也增大,我国自行研制的水平连续铸造球墨铸铁型材生产线已通过国家鉴定,在约2000年前的西汉时期。而现代的球墨铸铁则是迟至 1947年才在国外研制成功的.3wt%。(3)奥氏体-贝氏体球墨铸铁的研究与应用、美国、含硫量高(冲天炉熔炼)和出铁温度低的情况,至今我国球墨铸铁年产量达230万吨、Ti等总量为0。在利用天然钒钛生铁制作钒钛合金球墨铸铁方面。1981年,随后用硅铁孕育,也就是说;另一方面克服硫以及杂质元素的影响以保证球化也是必须的;稀土可使原来(存在于铁液中的)不活化的晶核得以长大。国际冶金行业过去一直认为球墨铸铁是英国人于1947年发明的.8wt%,以及球墨铸铁齿轮的点蚀。稀土能使石墨球化,17. Morrogh发现。如果在球墨铸铁中加入0。结合球墨铸铁齿轮的应用、导热性。(1)铸态珠光体球墨铸铁曲轴和铸态铁素体球墨铸铁汽车底盘零件分别在我国第二汽车厂在河南巩县铁生沟西汉中,稀土残留量为0,由此
其他类似问题
为您推荐:
球墨铸铁的相关知识
其他1条回答
//baike.html:
下载知道APP
随时随地咨询
出门在外也不愁查看手机网站
宁国志诚机械,铸造自动化设备,耐磨,铁型覆砂,生产线,铸球,钢球,模具,热处理淬火,铸造环保设备,浇注机
&&&&&&&&&&&&宁国市志诚机械制造有限公司
  受焦炭价格、环保以及用户对铸件质量要求越来越高等因素的影响,电炉在很多地方已经取代了冲天炉。又由于生铁价格的不断上升,废钢在社会上沉淀存留量较多而价格较低,所以这几年广泛的用废钢加增碳剂的方法生产球铁及灰铁。如果工艺操作正确,不但可以提高铸件的综合物理性能质量,同时也降低了生产成本。  用电炉冶炼废钢加增碳剂生产铸铁件,尽管电炉便于化学元素含量的调整,而且主要元素可以调整到材质要求的范围之内,但是如果不采取有效的处理手段,生产出铸件的质量,确与用冲天炉生产出的铸件质量有较大差异。最主要的不同之处就是:用电炉熔化的铁液,无论是废钢加增碳剂或者是用铁屑作炉料,生产出的铸件白口倾向大,硬度高而精加工困难。本文就此谈谈自己的实践体会和认识。  一、冲天炉和电炉熔炼出铁液质量的不同之处  1.冲天炉熔炼的铁液  冲天炉是用焦炭作燃料,将固体的铁块和其它炉料,经过预热、熔化、过热、还原,最后铁液经炉底流入前炉缸,所经历的时间很短,大约10min左右,铁液往往要在前炉缸中停留一段时间,在这段停留时间里,对金属液的增核是有利的。虽然冲天炉的出炉温度一般在1450℃左右,但是铁液经过过热区的瞬间,炉温约1700℃,尽管铁液通过过热区的时间很短,却是以细小液滴通过的,能得到高温过热,有助于石墨溶于铁液,消除新生铁中粗大石墨片的遗传性。铸铁中的主要元素碳,在熔炼过程中有一个烧损和吸收的减增过程,由于铁液滴在灼热的焦炭上,铁液就吸收了焦炭中的碳原子,所以在整个熔化过程中,碳的吸收大于烧损,最终含碳量是增。同样铁液也会从焦炭中吸收部分硫。  在压球化剂作球化处理之前,都要先烫包。由于冲天炉的熔化速度快,当第一包球铁浇注完毕后,再处理下一包时,包内温度还很高,铁水倒入浇包内降温少,所以再进行球化处理时,出炉温度与电炉相比较可以稍低些,对球化处理质量(球化剂的熔化及吸收、浇注温度),影响不大或没有影响。用电炉熔化铁液,每炉熔化间隔时间约50~60min,有时间隔的时间可能会更长些,浇包散热时间长,包内温度低,经球化处理后,包内铁水温度约下降80℃,冬天温度下降的可能会更多,所以用电炉熔化铁液处理球铁时,出炉温度要比冲天炉的温度高些。  2.用电炉熔炼铁液对材质性能的影响  我们知道用电炉熔炼炉料,是由感应圈经导电产生磁场,在炉料中产生电涡流,由电涡流发热藉以熔化炉料。  (1) 对“自发晶核”的影响  废钢的熔点比铸铁高,增碳剂的熔点更高,当废钢在熔化过程中以及熔化之后,增碳剂被加热缓慢的溶解和扩散,增碳剂中的碳才能被钢液侵蚀吸收。钢液逐渐的变成铁液,即常称之为“合成铸铁”。由于废钢熔化温度高,钢液变成铁液之后的过热温度往往就高。在高温下,铁液中的碳易于被氧化成CO,因此有人认为铁液中的碳也是一种“气体形成元素”。CO在铁液中的溶解度很少,形成后即释放于邻近液面的大气中。在生产实践中我们会发现,当高温钢液倒入抬包后,抬包中有放射状火花飞出(俗称贼花),即可能是高温氧化的释碳现象。  电炉在熔炼铁液过程中,具有电磁搅拌摩擦的特性。铁液过热温度高、过热时间长、且又有感应电流的搅拌摩擦,铁液中微细的晶态石墨即自发晶核和外来结晶核心,都会逐渐溶于铁液而消失;或浮经液面与集渣剂粘裹在一起被挑出炉外。这样,使铁液中可在共晶结晶时作为石墨外来晶核的物质大幅度减少。  硫在铸铁中,尤其是在球墨铸铁中是有害元素。但有资料介绍:当含硫量小于0.06﹪时,硫的一些有益作用就无法得到发挥。在铸铁中存在有细小而分散的硫化物夹杂,能在石墨的生核和成长中起积极而有益的作用。用感应电炉熔炼废钢加增碳剂的合成铸铁,其最终含硫量一般不会超过0.03%的。如果原铁水的含硫量过低,球化剂中的镁就无从与硫化合,过多的残余镁量不但阻碍石墨化,而且还会使铸件产生缩孔、气孔等铸造缺陷。如果减少球化剂的加入量,综合考虑又恐会影响到球化率。  合成铸铁在感应电炉中,因含硫量过低、过热温度高、电流的搅拌摩擦等因素影响,铁液中石墨化的核心大幅度减少。这种缺乏石墨化结晶核心的铁液,过冷度很大,对孕育处理的回应能力极差,很难通过常规孕育处理措施,使铸铁具有符合要求的微观组织。因而即使化学成分含量完全符合要求,往往浇注出的铸件硬度高,不便于机械加工。有资料介绍:硫从0.02%增加到0.06%,抗拉强度增加50MPa以上,即可提高一个牌号以上,硬度值即可增加HB20。进一步增加硫到0.1%,强度值和硬度值变化不大,有此可见在灰铸铁中,硫控制在0.06~0.1%为宜(我厂生产的汽车制动鼓,材质是HT250,硫控制在0.07~0.09%).  顺便也谈谈用电炉熔炼“铸铁屑”,即便熔炼的铁屑干净无锈蚀,不需要高温,过热温度并不是很高,但是由于电磁搅拌的摩擦作用以及碳、硅的烧损,如果浇注前不进行元素调配和采取有效的孕育措施,生产出的铸件同样是硬度高。  (2)用应电炉熔炼对提高材感质质量的影响  ①感应电炉熔炼,铁水温度可升以提到1570℃以上,并可以在高温状态下长时间的保温,在该温度下,可以使原材料带入的夹杂物,以及在熔炼过程形成的夹渣及夹杂物上浮至铁液表面。对于废钢+增碳剂、尤其是粒子钢+废钢+增碳剂+回炉料,这些炉料无论是废钢、粒子钢或者是粒子铁,大都是白口组织,白口组织具有较强的遗传性,要消除遗传性就需要适当的提高熔化温度,增加保温时间,才能够比较好的净化铁液,减少铸件缺陷。  ②合金元素烧损量低,铁水中锰、硅的烧损低于冲天炉熔炼。便于各元素的调控,能够稳定化学成分含量。  ③生产球墨铸铁时,含硫量过高将会直接影响到球铁的质量。如球化级别低下、材质强韧性差、铸件有夹渣等铸造缺陷。用电炉熔炼铸铁时不存在有增硫反应。  ④用废钢+增碳剂生产合成铸铁,由于废钢的夹杂物含量低,成分稳定,加增碳剂经高温熔炼之后,消除了炉料的遗传性,铁液的纯净度得到提高,同时增碳剂具有孕育作用,促使石墨化的效果更加稳定突出,铸件的基体组织晶粒会更加均匀、细化,所以生产出铸件材质的韧性和强度均得到提高。  二、扬长补短、优化操作程序  用废钢生产球墨铸铁的优点前面已谈,就不再赘述。  用电炉熔炼废钢(铁屑)+增碳剂生产球墨铸铁,欲想稳定产品质量,需要补的“短”,主要是解决金属液在凝固结晶时,自发晶核少、铁液过冷度大、石墨化能力差、铸件硬度高而不便于机械加工的问题。具体的“补短”操作方法是:  ①在冶炼后期要注意“自发晶核”的培养。加入适量的废钢使铁液激冷,同时适量的加入硅铁以及细颗粒的增碳剂,上面覆盖保温剂,降低功率或停电保温一段时间,以促使析出微细的晶态石墨。  ②在出炉或浇注过程中,进行充分的多次孕育处理,以补充“外来晶核”,可以添加小颗粒的增碳剂、碎硅铁粉粒以及复合孕育剂,虽然加入量很少,但是促进生核的效果很好。  ③如果含硫量过低(特别是生产HT时)可适量加入些硫铁,但必须控制在要求的范围内。总之优化操作程序指的就是:炉料入炉的先后顺序、熔炼中的温度和出炉温度的控制、化学成分的选控、以及强化孕育和复合孕育。  我们的产品是汽车轮毂,造型采用的是铁模覆砂工艺,材质是QT450-10,其硬度是HB160-210,属于铁素体基体球铁。但是用户为了便于机械加工提高生产速度,除要求材质的抗拉强度及延长率合格之外,还要求铸件的硬度≤200 HBW。  化学成分的选择﹙%﹚:  CE4.6-4.8,C3.6-3.9,Si1.2-1.3(原)、2.65-2.9(终),Mn0.2-0.4,P≦0.05,S≤O.035(原)、≤0.022(终),RE(残)0.02-0.04, Mg(残)0.03-0.06。配料单  在实际生产中,碳当量控制在中上线,硅力争控制在上线,旨在提高铁液的石墨化能力。    炉料的加入顺序、操作方法及温度控制  先在炉底加入新生铁,再加入废钢、增碳剂(根据炉料情况凭经验而加,以防增碳剂堆积形成高温层),边熔化边加废钢和增碳剂,尽可能在粒子钢没有加入之前,把增碳剂需要加入量的60-70%加完,最后加回炉料。在这段时间里,为了提高增碳剂的吸收率,消除铁液中的遗传性,宜采用大功率高温熔化。  但上述加料方法也存在着两个问题:  ①当铁水含碳量达到一定量时,再提高铁水含碳量就困难了。  ②在熔炼后期加入粒子钢,炉内金属液喷溅严重,不能保证安全生产。因此也可以采用另一种加料顺序,先熔化粒子钢,边熔化边往外舀渣,当熔化完毕需加入量(一般40―50%)并达到一定温度时,关闭电源,消除炉内液面“驼峰”,使液面平稳,熔渣就会往液面中心部聚集,这样就便于舀净熔渣。熔渣清除干净之后,就可以适当多加些增碳剂。启动电源高功率熔化,边加废钢边加增碳剂直至炉满,加入部分硅铁取样分析。球铁金属液是一种铁水被饱和的Fe-C-Si-O之合金溶液,其内部存在化学反应与反应平衡问题:   2C+SiO2→Si+2CO  铁水温度高于平衡温度时,反应向右,碳被氧化放出CO降碳,是还原反应。低于平衡温度时反应向左,Si被氧化,形成SiO2黑渣,是氧化反应。平衡温度在℃之间。故推荐球化处理温度在1450±20℃之间。根据上述资料分析增碳剂合适的加热温度,如果加热温度高于平衡温度时,铁液中的碳被氧化损耗增加,增碳剂的吸收率降低。当加热温度低于平衡温度时,由于温度较低,增碳剂的溶解扩散速度下降,因而增碳剂的吸收率也较低。另外,在实际生产操作中,很难把炉温控制在平衡温度线。提高炉温可以加快增碳剂的溶解和扩散,有利于铁液对碳的及时吸收而缩短碳的氧化时间,尽可能的使吸收远大于损耗,同时也有利于提高熔化速度。所以在熔化前期我们采用大功率高温熔化。  由于粒子钢的含渣量太多,在熔化粒子钢过程中,需要用特制的勺往外舀渣,所以增碳剂不宜与粒子钢混装熔化。当炉料熔化完毕并彻底清净熔渣之后,留下10%的增碳剂作为波动可调空间,其余的全部加入,并加盖保温剂。  在炉内温度升高增碳剂溶解被铁液吸收后,清净保温剂及熔渣,加入部分硅铁,在硅铁上面覆盖保温剂,硅铁的加入量,应在代入硅1.2%左右,这是因为废钢和粒子钢的含硅量都很低,加入部分硅铁,一是为了起到脱氧作用;二是为了缩小后期调整范围,使成分含量更加准确;三是为了铁液成分含量不超过热分析仪的测量范围,避免测量失败。还需要说明的是,无论在任何阶段需要同时添加增碳剂和硅铁时,都要先加增碳剂,待增碳剂熔解扩散被吸收之后,再加增碳剂。这是因为硅具有排碳特性,即硅量的增加,降低了碳在铁水中的溶解度。其目的还是为了提高增碳剂的吸收率。  综上所述,影响增碳剂吸收的因素有:①增碳剂的质量;②铁水的含碳量;③铁水含硅量:④炉料和铁水质量(是否严重氧化);⑤炉工操作;⑥加入时间及加入方法;⑦炉温控制。  当炉温达到1320℃左右时,清净液面熔渣,取样倒入上海产的“贺利氏”牌热分析仪样杯中。在取样分析的前后时间里,先清理干净液面熔渣,适量加入一些回炉料;当热分析仪结果出来后,调整原铁水的碳、硅含量。  采取有效措施强化孕育:使用孕育剂的种类有75硅铁、增碳剂、硅钙钡复合孕育剂。用增碳剂进行炉内、包内双重孕育;用硅铁进行冲入孕育及浮硅孕育;由大包倒入抬包时加入硅钙钡复合孕育剂进行随流孕育。只要经热分析仪测报含碳量不超上限,出炉前在炉内液面(也称作预处理或预孕育)、在球化包底、以及球化反应结束扒渣后,在球铁液面,酌情适量加放一些细颗粒(0.5―1.0mm)的增碳剂。尽管这样作增碳剂的吸收率较低,但是确能生产大量的“外来晶核”,促进石墨化,有利于石墨的生成。  球化温度的控制。球化温度是根据铸件的大小、铸件壁的厚薄以及材质的不同而灵活掌握的。而且各单位又有各自的习惯作法。如山东临沭兴华机械厂用十吨包处理球铁,当包底有一定的铁水后,为降低下部铁液温度,延缓球化剂的起爆时间,减少反映沸腾,顺包边加放“热铁块”,也便于降温浇注大型铸件,效果很好。濮阳一家铸造厂,用废钢生产球铁,出炉温度1550℃,当包内铁液达到3/4时,停止倒铁水,让球化包内进行球化反映,在包内作球化反映时,炉内剩余1/4的铁水继续升温,包内反映结束并清理浮渣,加孕育剂后再出炉内剩余1/4的铁液,这时炉内铁液温度已是1570℃,用这种方法作球化处理,生产出的铸件内在质量好,无气孔等铸造缺陷。我们在出炉之前的熔化过程中,要经历一个先高温后低温的过程,先高温便于消除铁液中的“遗传性”和促进增碳剂的吸收,后适当低温便于晶核的复生和球化处理。我们在生产实践中,原来的球化处理温度控制在℃(用光学测温仪),生产出铸件的硬度偏高,其硬度常在200HBW左右徘徊,时而硬度还有超标现象而影响产品质量。2010年下半年,逐渐降低球化处理温度,现在出炉温度控制在1520℃±10℃左右。  三、产品质量  产品为QT450-10轮毂,造型采用铁模覆砂工艺, 球铁的球化级别1-3级,石墨大小6-7级,石墨球密而分布均匀,硬度HB170-190,硬度很少有超过HB200的。铸件实体切割取样作物理实验,抗拉强度≥500MPa(常在500 MPa左右),延长率13%-16%(最高可达22%)。

我要回帖

更多关于 熔炼黑铁锭在哪学 的文章

 

随机推荐