honma价格的ms.和11号分别是多少度?

新疆吾尔喀什尔地区晚泥盆世铁列克提组火山岩LAICP-MS锆石U-Pb年龄、地球化学特征及构造意义
&&&&2015, Vol. 31 Issue (2): 534-544
向坤鹏, 李永军, 杨洋, 王冉, 杨高学, 孙勇, 王军年. 2015. 新疆吾尔喀什尔地区晚泥盆世铁列克提组火山岩LAICP-MS锆石U-Pb年龄、地球化学特征及构造意义. 岩石学报,31(2): 534-544&&
Xiang KP, Li YJ, Yang Y, Wang R, Yang GX, Sun Y and Wang JN. 2015. LA ICP-MS zircon age, geochemistry and tectonic setting of the volcanic rocks from the Late Devonian Tieliketi Formation in the Ur Kashgar Mountain, western Junggar. Acta Petrologica Sinica,31(2): 534-544 (in Chinese with English abstract)&&
新疆吾尔喀什尔地区晚泥盆世铁列克提组火山岩LAICP-MS锆石U-Pb年龄、地球化学特征及构造意义
向坤鹏1, 李永军1, 杨洋1, 王冉1, 杨高学1, 孙勇1, 王军年2&&&&
1. 长安大学地球科学与资源学院, 西部矿产资源与地质工程教育部重点实验室, 西安 710054;2. 新疆维吾尔族自治区地质矿产开发局第七地质大队, 乌苏 833000
基金项目:本文受国家自然科学基金项目(303027)、中国地质调查局地质矿产调查评价专项(6)和中央高校基本科研业务费专项资金()联合资助.
第一作者简介:向坤鹏,男,1988年生,博士生,构造地质学专业,E-mail:
摘要:西准噶尔晚泥盆世铁列克提组主要分布于吾尔喀什尔山西部,为一套海陆交互相火山-沉积地层。火山岩地球化学研究表明,SiO2含量为51.18%~62.48%,TiO2为0.60%~1.49%、全碱(K2O+Na2O)为1.26%~6.28%,相对富钠贫钾。A12O3为15.53%~18.68%、MgO为2.64%~7.55%,Mg#为41.2~58.5,属于亚碱性系列。稀土元素总量高(∑REE=36.21×10-6~97.10×10-6),轻、重稀土分馏较强((La/Yb)N=2.88~6.72),具轻微负Eu异常(Eu/Eu*=0.74~1.07)。相对富集LILE(Rb、Ba、Th和K),亏损HFSE(Zr、Hf),Nb和Ta强烈亏损,Ti轻微亏损。岩石源区主要受俯冲流体交代,受地壳物质混染较弱,整体具有弧火山岩的地球化学特征。与火山岩伴生的凝灰岩LA ICP-MS锆石U-Pb同位素测年结果为363.3±4Ma。综合分析认为铁列克提组火山岩属于大陆边缘弧火山作用的产物,同时,博什库尔-成吉斯岩浆弧可能至少延续至晚泥盆世。这为进一步认识西准噶尔博什库尔-成吉斯岩浆弧的性质及构造演化提供了证据。
LA ICP-MS锆石U-Pb定年&&&&
地球化学&&&&
构造环境&&&&
晚泥盆世&&&&
西准噶尔&&&&
LA ICP-MS zircon age, geochemistry and tectonic setting of the volcanic rocks from the Late Devonian Tieliketi Formation in the Ur Kashgar Mountain, western Junggar
XIANG KunPeng1, LI YongJun1, YANG Yang1, WANG Ran1, YANG GaoXue1, SUN Yong1, WANG JunNian2&&&&
1. Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of E Earth Science and Resources College, Chang'an University, Xi'an 710054, C2. No.7 Geological Survey Team, Xinjiang Bureau of Geology and Mineral Resource Exploration, Wusu 833000, China
Abstract: The Late Devonian Tielieketi Formation, overall a suit of continental-marine alternating facies volcanic-sedimentary rocks, is mainly distributed in the west of Ur Kashgar Mountain, western Junggar. The volcanic rocks are belong to sub-alkaline series, with SiO2 ranging from 51.18% to 62.48%, TiO2 ranging from 0.60% to 1.49%, total alkaline (K2O+Na2O) ranging from 1.26% to 6.28%, A12O3 ranging from 15.53% to 18.68%, MgO ranging from 2.64% to 7.55%, and Mg# ranging from 41.2 to 58.5, and also showing relative rich in sodium, but poor in potassium. Moreover, all samples are characterized by higher rare earth elements (∑REE=36.21×10-6~97.10×10-6) and LREE enrichment ((La/Yb)N=2.88~6.72), but weak negative Eu anomaly (Eu/Eu*=0.74~1.07). In addition, they display LILE enrichment (such as Rb, Ba, Th and K), HFSE depletion (Zr and Hf), obvious Nb and Ta negative anomalies, and slight Ti depletion. The results show geochemical characteristics of arc volcanic rocks as a whole, suggest that all the rocks from the Tielieketi Formation were derived from continental marginal arc setting with the source mainly affected by the fluid from the subduction zone, and weak crustal material contamination. The U-Pb zircon LA ICP-MS age of the tuff closely associated volcanic rocks is 363.3±4.0Ma. These observations, in combination with previous work, indicate that the Boshchekul-Chingiz arc may sustain to the Late Devonian at least, furthermore, provides evidence for further understanding the property and tectonic evolution of the Boshchekul-Chingiz arc in the western Junggar.
Key words:
Zircon LA ICP-MS dating&&&&
Geochemistry&&&&
Tectonic setting&&&&
Late Devonian&&&&
Western Junggar&&&&
西准噶尔地处西伯利亚、哈萨克斯坦和塔里木板块交汇的关键部位,主要由一系列增生杂岩带和古生代岩浆弧构成(; ; ),是中亚古生代俯冲-增生复合造山带的主要组成部分(; ; )。根据物质组成及构造属性划分为北带和南带,其中北带主要以近EW向展布的古生代沉积-火山碎屑岩系及火山弧为特征,与南带的增生杂岩带大致以谢米斯台山南缘断裂为界(; )。主要构造单元有早古生代博什库尔-成吉斯岩浆弧和晚古生代扎尔玛-萨吾尔岩浆弧,二者之间以库吉拜-和布克赛尔-洪古勒楞蛇绿岩带为界。其中位于南侧的博什库尔-成吉斯岩浆弧沿着塔尔巴哈台山南麓呈近东西向展布,经谢米斯台山和赛尔山一直延伸到沙尔布尔提山地区。
研究区吾尔喀什尔山一带位于博什库尔-成吉斯岩浆弧南缘(图 1a),区内泥盆系出露较为齐全,下、中、上统均有出露,这为研究该区泥盆纪构造演化提供了良好的物质基础。前人对该区的研究主要集中在花岗岩(; ; )以及花岗岩体侵位与铜金成矿关系方面(; );对地层和火山岩的研究相对薄弱。其中,地层的形成时代主要依靠古生物化石资料确定(; ),缺乏高精度同位素定年数据的约束;火山岩的研究主要集中在早、中泥盆世(),对晚泥盆世火山岩研究较少,这对全面认识该区古生代构造演化带来了困难。本文以晚泥盆世铁列克提组火山岩为研究对象,通过LA ICP-MS锆石U-Pb同位素定年和地球化学分析,结合区域资料综合研究,为进一步认识西准噶尔博什库尔-成吉斯岩浆弧的构造演化提供依据。
图 1 西准噶尔地区大地构造示意图(a,据; )、研究区地质图(b,据新疆地质矿产勘查开发局第七地质大队和长安大学地质调查研究院,2014新疆地质矿产勘查开发局第七地质大队,长安大学地质调查研究院. 2014. 新疆额敏前进牧场一带1?5万区域地质矿产调查报告修改)及实测地质剖面图(c)
Fig. 1 Schematic tectonic map showing main tectonic units of the West Junggar(after ; ),geological map of study area(b) and the geological section map(c)
1 区域地质概况
西准噶尔地区较为典型的特征是区内深大断裂系极其发育,大致以呈EW向展布的白杨河-和什托勒盖谷地为界,南部断裂系主要呈NE-SW向展布,典型的有巴尔雷克断裂和达尔布特断裂系;北部断裂系呈近EW向展布,以谢米斯台断裂为典型。研究区位于吾尔喀什尔山西部,巴尔雷克断裂与谢米斯台断裂交汇处,次级构造极其发育。区内侵入岩广泛发育,岩体的分布严格受区域性大断裂控制。根据产状大致分为两类:一类呈岩基状产出,岩石类型以酸性为主,较为典型的有库鲁木苏复式岩基(),部分岩体具有埃达克岩相似的地球化学特征();另一类呈岩株状产出,岩石类型以基性为主,多为辉绿岩、辉长闪长岩,主要侵位于泥盆系中。
区内出露的最老地层为早-中志留世恰尔尕也组,含有较多珊瑚、三叶虫和腕足类化石;中志留世沙尔布尔组呈整合接触覆于恰尔尕也组之上,整体为一套海相火山熔岩建造。泥盆系分为早泥盆世马拉苏组、中泥盆世库鲁木迪组和晚泥盆世铁列克提组。马拉苏组下部以陆源碎屑岩为主,上部以中-基性火山岩和火山碎屑岩为主,具有典型岛弧火山岩的地球化学特征。库鲁木迪组与马拉苏组呈断层接触,整体为浅海相火山-陆源碎屑岩建造。铁列克提组与马拉苏组呈断层接触,局部被库鲁木苏岩体侵位,岩石组合为火山碎屑岩、火山熔岩夹少量陆源碎屑岩。其中火山岩表现出间歇性、多期次喷发的特点,根据火山碎屑岩粒度变化规律,划分出多个火山喷发旋回,完整的火山喷发旋回从底到顶依次由火山角砾岩-含角砾凝灰岩-火山熔岩-凝灰岩组成,厚度100~400m。火山岩岩性主要为玄武安山岩和安山岩,少量玄武岩和英安岩。陆源碎屑岩以粗碎屑岩为主,多呈夹层产出,火山质成分含量较高,生物碎屑灰岩中产大量晚泥盆世动植物化石()。石炭系只出露了下石炭统,受断裂切割强烈,与泥盆纪各组均呈断层接触,形成于滨-浅海环境。
2 样品特征及分析方法
所有样品均采自基岩露头,采样剖面位置见图 1b,采样层位见图 1c。采集时尽量避开接触带、蚀变带和断裂破碎带等,以保证样品新鲜具有代表性。用于地球化学分析的样品岩性为玄武岩、玄武安山岩和安山岩,主要特征如下。
玄武岩具间隐间粒结构,块状构造。岩石由基性斜长石、辉石、少量脱玻绿泥石、金属矿物组成。基性斜长石约占66%,呈半自形板条状,粒径为0.02×0.2~0.1×0.7mm,其间充填他形粒状辉石、金属矿物及脱玻绿泥石。辉石约占25%,他形粒状,粒径0.05~0.45mm。金属矿物约占5%,为他形粒状磁铁矿、钛铁矿,粒径0.02~0.52mm。脱玻绿泥石占4%,呈他形分布于斜长石格架间。
玄武安山岩具斑状结构,块状构造。斑晶为中长石(10%~12%),半自形板状,粒径0.32×0.8~0.8×1.8mm,轻度绢云母化、泥化,隐约可见环带构造。基质(88%~90%)具交织结构,由中长石(70%~75%)、辉石(8%~12%)、脱玻绿泥石(4%~5%)、石英(1%~3%)和白钛石(1%~2%)组成。中长石呈半自形板条状、板状,粒径0.08~0.3mm,多数呈半定向平行排列,其间充填他形粒状石英、辉石、脱玻绿泥石。少量副矿物(1%~3%),主要为磁铁矿、钛铁矿、磷灰石和榍石。
安山岩具斑状结构,块状构造。斑晶主要为半自形板状中长石(12%~15%)和柱状角闪石(1%~3%)。中长石粒径0.16×0.4~0.8×2.5mm,轻度绢云母化、泥化,部分呈聚斑分布;角闪石粒径0.15×0.2~0.2×0.4mm,多数被绿泥石交代。基质(82%~87%)具交织结构,由中长石(65%~70%)、石英(5%~8%)、脱玻绿泥石(6%~8%)和白钛石(1%~3%)组成。中长石呈半自形板条状、板状,粒径0.08~0.3mm,多数呈半定向平行排列,其间充填他形粒状石英、
脱玻绿泥石和白钛石。少量副矿物(<2%),主要为磁铁矿、磷灰石和榍石。
样品粗碎至2~4cm后,采用3%~5%的稀盐酸经超声波多次清洗以清除表面杂质。样品晾干后细碎,研磨至200目用于分析测试。岩石地球化学分析由长安大学西部矿产资源与地质工程教育部重点实验室完成,其中主量元素采用X射线荧光光谱(XRF)方法分析,XRF溶片法执行国家标准GB/T93,分析相对偏差小于5%。微量元素采用Thermo-X7电感耦合等离子体质谱仪测定。
用于LA ICP-MS锆石U-Pb测年的样品号为PM301RZ-1,岩性为晶屑凝灰岩,呈整合接触覆于玄武安山岩之上,二者为同一期次岩浆活动不同岩相的产物,其上被凝灰质砾岩覆盖。锆石分选由河北省区域地质调查研究所采用浮选和电磁选方法完成,根据颜色、形态、颗粒大小等特征初步分类,选择具有代表性的锆石进行制靶。激光剥蚀电感耦合等离子体质谱(LA ICP-MS)原位锆石U-Pb定年在西北大学大
陆动力学国家重点实验室完成。实验分析采用的ICP-MS为美国Agilent公司生产的Agilent 7500a,激光剥蚀系统为德国MicroLas公司生产的GeoLas200 M。激光剥蚀束斑直径为32μm,样品剥蚀深度为20~40μm。每个分析点的气体背景采集时间为25s,信号采集时间为45s。锆石年龄采用标准锆石91500作为外部标准物质。详细的实验分析过程和参数见相关文献(; ; ; ),数据处理采用Glitter程序(ver4.0,Macyuarie University),年龄计算时以标准锆石91500为外标进行同位素比值分馏校正,样品普通铅校正参见相关文献(),利用Isoplot 3.00(,,)处理分析数据,得到谐和曲线。
3 样品分析结果
3.1 LA ICP-MS锆石U-Pb年代学
挑选出的锆石为浅黄色-无色透明-半透明晶体,长轴60~100μm,长宽比为1?1~3?1,锆石群形态单一,多数为短柱状断头晶,部分具有完整的形态。在阴极发光(CL)图像(图 2a)上,锆石发育清晰的岩浆振荡环带和明暗相间的条纹结构,属于岩浆结晶的产物(; ),结合寄主岩石野外产状推测锆石为一次岩浆活动结晶形成。样品共进行了25个点的测试,测点均位于锆石振荡环带上,同位素比值和年龄数据见表 1。
图 2 铁列克提组凝灰岩锆石阴极发光图像(a)、加权平均年龄(b)与U-Pb谐和曲线图(c)
Fig. 2 CL images(a),weight average ages(b) and U-Pb concordia diagrams(c)of zircon grains for tuff of Tielieketi Formation
表 1(Table 1)
表 1 铁列克提组凝灰岩LA ICP-MS锆石U-Pb同位素分析结果
Table 1 Zircon LA ICP-MS U-Pb isotopic analysis of the tuff from the Tielieketi Formation in the West Junggar
WT-10.05390.00520.42210.03980.05680.00110.01790.000936817735828356735917100.60.45
WT-20.05560.00370.43370.02820.05660.00080.02210.000643512036620355544112103.10.47
WT-30.05410.00390.43820.03080.05870.00090.01880.000637713236922368537513100.30.48
WT-40.05360.00580.41860.04440.05670.00110.01730.000735320335532355734715100.00.61
WT-50.05380.00360.43560.02870.05880.00090.01830.00073621223672036853661399.70.41
WT-60.05280.00600.42820.04800.05890.00120.01820.00103192143623436983652098.10.43
WT-70.05340.00590.41870.04590.05690.00110.01680.00083472143553335763381699.40.47
WT-80.05410.00420.43330.03280.05810.00090.01690.000637514336623364634012100.50.54
WT-90.05430.00430.44360.03440.05920.00100.01760.000738414437324371635314100.50.48
WT-100.05360.00540.42080.04190.05690.00100.01900.000635519235730357638113100.00.71
WT-110.05330.00450.42070.03470.05720.00100.01820.00073431573572535963641399.40.55
WT-120.05320.00550.41580.04270.05670.00110.02330.00113381963533135574662299.40.37
WT-130.05400.00420.42440.03260.05710.00090.01660.000836914735923358533216100.30.33
WT-140.05560.00440.44920.03480.05860.00100.01810.000743614537724367636214102.70.48
WT-150.05460.00480.44670.03890.05930.00110.01780.000839716337527371735617101.10.45
WT-160.05480.00450.44070.03590.05830.00110.01760.000740515137125365635315101.60.48
WT-170.05400.00470.43920.03780.05900.00100.01790.000737116437027370635913100.00.56
WT-180.05470.00120.45110.00960.05990.00060.01800.000239830378737543604100.80.95
WT-190.05630.00450.43650.03410.05620.00100.01670.000746314236824353633414104.20.50
WT-200.05380.00330.43090.02610.05810.00080.01670.00053631123641936453349100.00.57
WT-210.05290.00420.41280.03240.05660.00080.01910.00063251523512335553821298.90.43
WT-220.05360.00400.43140.03190.05840.00090.01800.00063541413642336653611199.50.53
WT-230.05390.00280.43170.02230.05810.00080.01720.0004367933641636453458100.00.61
WT-240.05490.00620.45160.05010.05960.00130.01830.001340820937835373836725101.30.32
WT-250.05410.00450.43560.03540.05830.00100.01970.000637715436725365639412100.50.60
表 1 铁列克提组凝灰岩LA ICP-MS锆石U-Pb同位素分析结果
Table 1 Zircon LA ICP-MS U-Pb isotopic analysis of the tuff from the Tielieketi Formation in the West Junggar
锆石样品具有较高且集中的Th/U值(为0.32~0.95,多数>0.4),且Th、U含量呈现出良好的正相关关系,属于典型岩浆成因锆石(; ; ; );25个测点206Pb/238U年龄值为353~375Ma,协和度为98%~104%,最大年龄误差为8Ma,获得206Pb/238U加权平均年龄为363.3±4.0Ma,MSWD=0.42(95%置信度)(图 2b),为晚泥盆世晚期。锆石U-Pb表面年龄基本一致,谐和线分布较好(图 2c),说明锆石对U-Pb同位素体系封闭较好,锆石为岩浆同一次喷发结晶形成,能代表所属地层的形成时代。
3.2 主量元素地球化学
火山岩岩石化学分析结果及有关参数列于表 2。从表中可以看出,火山岩主量元素中SiO2含量变化范围较大(51.18%~62.48%,平均55.76%),以中性为主。TiO2含量为0.60%~1.49%,与岛弧拉斑玄武岩(TiO2=0.80%)和大陆溢流玄武岩(TiO2=1.00%)较为接近,但远低于洋岛拉斑玄武岩(TiO2=2.63%);P2O5含量为0.16%~0.50%;A12O3含量较高,为15.53%~18.68%,平均17.07%,与俯 冲带火山岩的富铝特征相一致;MgO含量变化较大,为2.64% ~7.55%,平均4.38,Mg#值为41.2~58.5,远低于原生岩浆Mg#=68~75(),指示岩浆经历了一定程度的结晶分异作用。火山岩全碱(Na2O+K2O)含量为1.26%~6.28%,所有样品均显示富钠贫钾(Na2O/K2O>1)的特征。
表 2(Table 2)
表 2 铁列克提组火山岩主量元素(wt%)和微量元素(×10-6)及有关参数
Table 2 The major element(wt%) and trace element(×10-6)concentrations of the volcanic from the Tielieketi Formation in the West Junggar
表 2 铁列克提组火山岩主量元素(wt%)和微量元素(×10-6)及有关参数
Table 2 The major element(wt%) and trace element(×10-6)concentrations of the volcanic from the Tielieketi Formation in the West Junggar
在TAS(SiO2-Na2O+K2O)图解(图 3a)中,样品投点分别落入玄武岩、粗面质玄武安山岩、玄武安山岩和英安岩区域,属于亚碱性系列,这与所有样品里特曼指数均小于4一致。在SiO2-K2O图解中(图 3b),样品主体属于钙碱性系列,并显示向高钾钙碱性系列过渡的特征。
图 3 火山岩全碱-SiO2(a,据 )和K2O-SiO2图解(b,据)
图 4-图 6的图例同此图
Fig. 3 The alkali-SiO2 diagram(a,after
) and K2O-SiO2 diagram(b,after )for volcanic rocks of Tielieketi Formation
Symbols in Fig. 4-Fig. 6 are the same as those in this figure
3.3 稀土元素地球化学
火山岩样品稀土总量(∑REE)为36.21×10-6~97.10×10-6,平均为58.68×10-6;轻稀土总量(∑LREE)为28.54×10-6~83.29×10-6,重稀土总量(∑HREE)为7.67×10-6~15.64×10-6,∑LREE/∑HREE为3.49~6.02,显示轻、重稀土明显分异。(La/Yb)N值为2.88~6.72;(Ce/Yb)N值>1(2.94~5.83),稀土元素配分曲线分布图(图 4a)上样品配分曲线均表现为向右下倾斜,属轻稀土富集型。(La/Sm)N值均>1(1.16~2.42),反映轻稀土之间分馏程度较好。(Gd/Yb)N值为1.48~2.26;(Dy/Yb)N值为1.25~1.62,曲线向右下倾斜但较为平缓,指示重稀土之间分馏程度相对轻稀土较差。δEu值为0.74~1.07,平均0.87,多数样品显示微弱的负铕异常,表明原始岩浆在演化过程中经历了微弱的斜长石分离结晶作用()。各样品REE配分曲线基本平行,只有相对位置的高低,显示同源岩浆演化的特征。
图 4 火山岩球粒陨石标准化稀土元素配分图(a)及原始地幔标准化多元素蛛网图(b)(标准化值据)
Fig. 4 Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element spider diagram(b)for volcanic rocks of Tielieketi Formation(normalization values after )
3.4 微量元素地球化学
原始地幔标准化的微量元素蛛网图(图 4b)显示,样品大离子亲石元素(LILE)Ba、Th、K相对富集,其中Ba、K的富集尤为明显;高场强元素(HFSE)相对亏损,显示明显的Nb、Ta槽,Ti轻微亏损,总体表现出与俯冲带相关的大陆或岛弧岩浆相似的地球化学特征(; )。相容元素Cr(6.68×10-6~106.8×10-6)和Ni(6.73×10-6~68.35×10-6)含量远低于原生岩浆的含量(Cr=300×10-6~500×10-6,Ni=300×10-6~400×10-6),表明成岩过程中经历了橄榄石和单斜辉石的分离结晶作用。样品具有较大的Zr/Sm值(14.64~57.18),反映源区有角闪石的残留()。样品Nb的丰度为1.16×10-6~5.20×10-6,平均2.48×10-6,Ta的丰度为0.06×10-6~0.29×10-6,平均0.16×10-6,与岛弧拉斑玄武岩Nb、Ta丰度(Nb的丰度范围为1.7×10-6~2.7×10-6,Ta的丰度范围为0.10×10-6~0.18×10-6)接近,低于洋脊拉斑玄武岩(Nb=4.46×10-6,Ta=0.29×10-6)。Nb/Ta值(9.82~19.42,平均16.41),明显低于OIB(17.78),相对接近于原始地幔值(Nb/Ta=17; )。所有样品的Zr丰度为42.73×10-6~147.6×10-6;Hf丰度值为1.16×10-6~3.14×10-6,接近于火山弧拉斑玄武岩中Zr和Hf的丰度(分别为40×10-6、1.17×10-6)。Zr/Hf(33.39~46.95,平均41.63),高于原始地幔Zr/Hf=36.27()。以上特征可能与岩浆上升过程中消减组分加入或陆壳物质混染作用有关()。
4.1 地层形成时代
铁列克提组主要分布于额敏-塔勒艾勒克以南地区,在吾尔喀什尔山一带该组整体呈NE向展布,特征较为典型,其中马拉苏东剖面为铁列克提组的参考剖面之一()。前人主要根据所含的生物化石确定该组的形成时代,缺乏高精度同位素定年数据的约束。新疆区调队于该组内发现大量植物化石,主要有Leptophloeum rhombicum Dawson(斜方薄皮木),Lepidodendropsis sp.(拟鳞木)和Asterocalamifopsis sp.(拟星芦木)等,其中斜方薄皮木被认为是晚泥盆世法门期的标准化石。并发现丰富的腕足、珊瑚、腹足、瓣腮、头足等化石,其中Cyrtospirifer cf. lebediancus(纤弱弓石燕相似种),Cyrtospirifer cf. disjunetus(遥远弓石燕相似种),Praewaagenoconcha sp.(古瓦岗贝)等腕足化石具有晚泥盆世晚期生物分子的浓厚色彩(新疆维吾尔自治区地质局,1977新疆维吾尔自治区地质局. 000额敏幅区域地质调查报告)。本次于凝灰岩中获得LA ICP-MS锆石U-Pb加权平均年龄为363.3±4.0Ma,时代为晚泥盆世,与该组化石资料所指示的时代基本一致,代表铁列克提组的形成时代。
4.2 岩石成因与源区性质
铁列克提组火山岩主量元素及相关图解显示主体为一套亚碱性火山岩,岩石成分以中性为主,相对富集轻稀土元素(LREE)和大离子亲石元素(LILE),亏损高场强元素(HFSE),Nb、Ta出现较为明显的凹槽,Ti轻微亏损,REE配分模式为右倾型,具有轻微的Eu负异常到正异常,表现出与俯冲有关的岛弧火山岩的地球化学特征。所有样品的La/Nb值(1.85~6.39,平均3.65)与岛弧玄武岩的La/Nb值一致La/Nb>1.4();较低的Yb含量(1.00×10-6~1.98×10-6)和Ta/Yb(0.05~0.22)比值,指示其源区岩浆为与俯冲带有关的岛弧岩浆()。在Ba/Nb-La/Nb图中(图 5a),样品投点在岛弧火山岩区,整体显示与弧火山岩相关的地球化学特征。利用Th/Yb-Nb/Yb(图 5b)图解进一步区分大洋岛弧及陆缘弧,样品落入大洋岛弧和陆缘弧交互区域,在Zr/Y-Zr(图 5c)图解中,样品主要投点在陆缘弧区域。
图 5 火山岩Ba/Nb-La/Nb(a,据)、Th/Yb-Nb/Yb(b,据)和Zr/Y-Zr判别图解(c,据)
Fig. 5 Ba/Nb vs. La/Nb(a,after ),Th/Yb vs. Nb/Yb(b,after ) and Zr/Y vs. Zr(c,after )diagrams for volcanic rocks of Tielieketi Formation
火山弧岩浆主要由洋壳及其沉积物在俯冲过程中形成的流体或熔体交代过的上覆地幔楔发生部分熔融形成(; ),由下地壳镁铁质岩石部分熔融的可能性很小,因为样品具有比下地壳岩石部分熔融产生的岩浆Mg#值(一般小于40,)更高的Mg#值。另外,样品较低的Cr和Ni含量均指示为演化岩浆。洋底沉积物中Th含量较高(;
),少量沉积物的加入也会导致该元素含量升高显示正异常()。火山岩微量元素蛛网图中并无Th异常,说明洋底沉积物对岩浆源区的贡献较小,其岩浆未受洋底沉积物的明显混染。所有样品Zr/Nb(24.11~46.15)远高于OIB中Zr/Nb比值(5.8),处于岛弧火山岩Zr/Nb值(10~60)变化范围之内();Hf/Ta为9.34~18.83,远大于OIB的相应比值(Zr/Nb=5.8; Hf/Ta=2.9),与N-MORB的比值较为接近(Zr/Nb=30; Hf/Ta=15.5)。样品Zr/Nb值均大于18,指示玄武质岩浆由亏损型地幔部分熔融产生(),这与Zr-Nb图解中所有样品均投点于亏损地幔源区(图 6a)相吻合。
图 6 火山岩Zr-Nb图解(a,据)和Th/Yb-Ba/La图解(b,据)
Fig. 6 Zr vs. Nb(a,after ) and Th/Yb vs. Ba/La(b,after )diagrams for volcanic rocks of Tielieketi Formation
火山岩Th/Ta值(3.07~10.34)明显高于MORB中Th/Ta值(<1.6)(),与岛弧玄武岩Th/Ta值相当,该比值较大可能指示了消减流体的加入。样品相对于原始地幔、MORB以及OIB(Ce/Pb=25; )明显低的Ce/Pb值(2.92~10.46,平均为6.22),也表明可能有俯冲板片来源流体的加入(),而大多数样品较高的Ba/La比值(>13),进一步指示俯冲带流体对岩浆源区的作用强烈(),这与Th/Yb-Ba/La(图 6b)图解中,样品投点显示相对更明显的流体加入趋势一致。样品La/Sm值较小(1.81~3.76),与样品相对于原始地幔(Zr/Hf=36.3)较高的Zr/Hf值相吻合,指示地壳混染作用在岩浆演化过程中的影响不大;另外,样品Nb/U值(3.55~7.61)远低于大陆地壳的Nb/U比值(上地壳Nb/U=9;下地壳Nb/U=21),也指示在上升过程中,岩浆受大陆地壳物质混染的程度较低,暗示与俯冲作用有关的板片流体对地幔交代作用及源区成分有重要贡献。
4.3 构造环境分析
吾尔喀什尔山一带位于博什库尔-成吉斯岩浆弧南缘,该区泥盆系出露较为齐全。早泥盆世马拉苏组为一套滨浅海相沉积,晚期伴随有海进。火山岩以中基性为主,属于低钾拉斑-钙碱性系列;中泥盆世海进达到最大,整体为滨海相沉积。火山岩仍以中基性为主,属于为钙碱性-高钾钙碱性系列,安山岩具有类似于埃达克岩的地球化学特征();晚泥盆世铁列克提组岩石组合为火山碎屑岩、火山熔岩夹少量陆源碎屑岩,整体为一套火山质粗碎屑岩建造,生物碎屑灰岩中产大量晚泥盆世动植物化石,形成于海陆交互相环境。自下而上,沉积环境由滨浅海相向陆相过渡,伴随大量钙碱性火山岩的产出,整体代表了弧后盆地发育晚期挤压构造背景下的产物。而这些海陆交互相沉积得以保存至今,并没有被立即剥蚀,说明在铁列克提组沉积之后,该区进入新一期的构造演化阶段,构造体制快速转变为伸展构造背景,这与早石炭世该区整体为半深海-深海的弧后盆地沉积环境相一致。
近年来,有研究者认为成吉斯岩浆弧岛弧建造的时代为中志留世-早泥盆世(; ; ),北侧扎尔玛-萨吾尔岩浆弧发育早石炭世火山弧侵入岩,为晚古生代岛弧()。晚泥盆世铁列克提组火山岩呈现出陆缘弧相关的地球化学特征,火山岩形成时代在扎尔玛-萨吾尔岩浆弧发育之前,是博什库尔-成吉斯岩浆弧南部大陆边缘弧火山作用的产物,属于博什库尔-成吉斯岩浆弧的组成部分。早石炭世北部斋桑-额尔齐斯缝合带所代表的古大洋南向俯冲形成扎尔玛-萨吾尔岩浆弧。
(1)西准噶尔吾尔喀什尔山一带铁列克提组火山岩岩性主要为玄武安山岩和安山岩,少量为玄武岩和英安岩,整体属于亚碱性系列。火山岩具有弧火山岩相关的地球化学特征,岩石由亏损型地幔部分熔融形成,主要受俯冲板片流体的强烈影响,地壳物质的混染作用不明显。
(2)与玄武安山岩紧密伴生的凝灰岩LA ICP-MS锆石U-Pb测年获得加权平均年龄为363.3±4.0Ma,代表了火山岩的喷发时间,与区域化石资料一致,指示地层的形成时代为晚泥盆世。
(3)根据火山岩地球化学特征、形成时代、岩石谱系演化趋势,结合区域地质概况综合分析,认为铁列克提组火山岩属于大陆边缘弧火山作用的产物。
致谢 LA ICP-MS锆石U-Pb定年分析测试得到西北大学柳晓明、弓化栋的帮助;两位匿名审稿专家认真审阅了本文并提出了具体的修改意见;在此一并表示衷心感谢!
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204 Pb.
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust.
Ballard JR, Palin JM, Williams IS, Campbell IH and Faunes A. 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP.
Ben Othman D, White WM and Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling.
Cai TC. 1999. Stratigraphy (Lithostratic) of Xinjiang Uygur Autonomous Region. Beijing: China University of Geosciences Press, 1-430 (in Chinese)
Chai FM, Yang FQ, Liu F, Geng XX, Lü SJ, Jiang LP, Zang M and Chen B. 2012. Geochronology and genesis of volcanic rocks in Beitashan Formation at the northern margin of the Junggar, Xinjiang. Acta Petrologica Sinica, 28(7):
(in Chinese with English abstract)
Chen JF, Han BF, Ji JQ, Zhang L, Xu Z, He GQ and Wang T. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China.
Claesson S, Vetrin V, Bayanova T and Downes H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic.
Condie KC. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwestern United States.
Condie KC. 1999. Mafic crustal xenoliths and the origin of the lower continental crust.
Davidson JP. 1996. Deciphering mantle and crustal signatures in subduction zone magmatism. In: Bebout GE, Scholl DW, Kirby SH and John P (eds.). Platt Subduction Top to Bpttom. Geoghys, Monogr. 96. Washington DC: American Geophysical Union, 251-262
Edwards CMH, Morris JD and Thirlwall MF. 1993. Separating mantle from slab signatures in arc lavas using B/Be and radiogenic isotope systematic.
Elliott T, Plank T, Zindler A, White W and Bourdon B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102(B7):
Geng HY, Sun M, Yuan C, Zhao GC and Xiao WJ. 2011. Geochemical and geochronological study of Early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications.
Gill JB. 1981. Orogenic Andesites and Plate Tectonics. Berlin, Heidelberg, New York: Springer-Verlag, 1-390
Han BF, Guo ZJ, Zhang ZC, Zhang L, Chen JF and Song B. 2010. Age, geochemistry, and tectonic implications of a Late Paleozoic stitching pluton in the North Tian Shan suture zone, western China.
Horn I, Rudnick RL and Mcdonough WF. 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and LA-ICP-MS: Application to U-Pb geochronology.
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439
Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China.
Jiao GL, Li YJ, Yi SX, Yang GX, Wang JN and Wan Y. 2014. The geological record of the post-collision shift to intraplate system in West Junggar: Evidence from Kexike A-type granite. Northwestern Geology, 46(3): 39-49 (in Chinese with English abstract)
Koler J, Fonneland H, Sylvester P, Tubrett M and Pedersen RB. 2002. U-Pb dating of detrital zircons for sediment provenance studies: A comparison of laser ablation ICPMS and SIMS techniques.
Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram.
Le Roex AP, Dick HJB, Erlank AJ, Rei AM, Frey FA and Hart SR. 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east.
Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract)
Ludwig KR. 1991. Isoplot: A plotting and regression program for radiogenic-isotope data. U. S. Geological Survey Open-File Report, 91-445
Ludwig KR. 1999. Isoplot/Ex (version 2.05): A geochronological toolkit for Microsoft Excel. California: Berkeley Geochronology Centre Special publications, 43
Ludwig KR. 2001. Squid 1.02. A user manual. California: Berkeley Geochronology Center Special Publication 2, 19
McKenzie D and O’nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations.
Miller C, Schuster R, Klotzli U, Frank W and Purtseheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis.
Pearce JA. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Norry MJ (eds.). Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publications, 230-249
Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas.
Pidgeon RT, Nemchin AA and Hitchen GJ. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages.
Plank T and Langmuir CH. 1989. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4): 325-394
Rollison HR. 1993. Using Geochemical Data: Evaluation Presentation, Interpretation. Singapore: Longman Singapore Publishers, 160-170
Sajona FG, Maury RC, Bellon H, Cotton J, Defant MJ and Pubellier M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines.
Saunders AD and Tarney J. 1984. Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society, London, Special Publications, 16: 59-76
Seghedi I, Downes H, Vaselli O, Szakacs A, Balogh K and Pécskay Z. 2004. Post-collisional Tertiary-Quaternary mafic alkali magmatism in the Carpathian-Pannonian region: A review.
Shen P, Shen YC, Pan HD, Meng L, Song GX and Dai HW. 2010. Discovery of the Xiemisitai copper deposit in western Junggar, Xinjiang and its geological significance. Xinjiang Geology, 28(4): 413-418 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sauders AD and Norry MJ (eds.). Magmatism in the Ocean Basins.
Sun Y, Li YJ, Yang GX, Yi SX, Zhang SL, Sun Y and Wang JN. 2015. Zircon LA-ICP-MS U-Pb dating and tectonic settings implication of the Middle Silurian volcanic rocks in the west of Xiemisitai Mountain, West Junggar. Xinjiang Geology, 33(1): 27-32 (in Chinese with English abstract)
Wang JR, Jia ZL, Li TD, Ma JL, Zhao L, He YB, Zhang W and Liu KX. 2013. Discovery of Early Devonian adakite in West Junggar, Xinjiang: Implications for geotectonics and Cu mineralization. Acta Petrologica Sinica, 29(3): 840-852 (in Chinese with English abstract)
Wei RZ, Dong AG, Li S, Wang RJ and Chai JZ. 2011. Discovery and significance of Early Devonian fossils in the Mayileshan area, western Junggar, Xinjiang, China. Geological Bulletin of China, 30(1): 101-105 (in Chinese with English abstract)
Weng K, Xu XY, Ma ZP, Sun JM and Zhang T. 2013. U-Pb zircon dating and geochimical research of Devonian volcanic rocks in Ur Kashgar of western Junggar. Acta Geologica Sinica, 87(4): 515-524 (in Chinese with English abstract)
Williams IS, Buick IS and Cartwright I. 1996. An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reynolds range, central Australia. Journal of Metamorphic Geology, 14(1): 29-47
Wilson M. 1989. Igneous Petrogenesis. London: Springer Netherlands, 1-25
Windley BF, Alexeiev D, Xiao WJ, Kroner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt.
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age.
Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia.
Xiao WJ, Kr?ner A and Windley BF. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic.
Xu Z, Han BF, Ren R, Zhou YZ, Zhang L, Chen JF, Su L, Li XH and Liu DY. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic intra-oceanic subduction-accretion process. Lithos, 132-133: 141-161
Yuan HL, Wu FY, Gao S, Liu XM, Xu P and Sun DY. 2003. LA-ICP-MS zircon U-Pb age and REE of Cenozoic pluton in NE China. Chinese Science Bulletin, 48(14):
(in Chinese)
Zhang SL, Li YJ, Jiao GL, Yi SX, Sun Y, Yang Y and Wang JN. 2014. Disintegration of the Kulumusu granite batholith in the Wuerkashier, west Junggar and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 609-613 (in Chinese with English abstract)
Zhu YF, Sun SH, Gu LB, Ogasawara Y, Jiang N and Honma H. 2001. Permian volcanism in the Mongolian orogenic zone, Northeast China: Geochemistry, magma sources and petrogenesis. Geological Magazine, 138(2): 101-115
Zhu YF and Ogasawara Y. 2002. Carbon recycled into the deep Earth: Evidence from dolomite dissociation in subduction-zone rocks.
Zhu YF and Xu X. 2006. The discovery of Early Ordovician ophiolite mélange in Taerbahatai Mts., Xinjiang, NW China. Acta Petrologica Sinica, 22(12):
(in Chinese with English abstract)
Zong RW, Gong YM, Wang GC, Wang ZH, Ruan JP and Fan RY. 2012. Discovery of the Late Devonian plant fossils and its geological significance in Mengbulake region, western Junggar, Xinjiang. Earth Science, 37(Suppl.2): 117-128 (in Chinese with English abstract)
蔡土赐. 1999. 新疆维吾尔自治区岩石地层. 北京: 中国地质大学出版社, 1-430
柴凤梅, 杨富全, 刘锋, 耿新霞, 吕书君, 姜丽萍, 臧梅, 陈斌. 2012. 新疆准噶尔北缘北塔山组火山岩年龄及岩石成因.
焦光磊, 李永军, 易善鑫, 杨高学, 王军年, 万阈. 2014. 西准噶尔由后碰撞向板内体制转变的地质记录——来自克西克A型花岗岩的证据.
李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨.
申萍, 沈远超, 刘铁兵, 潘鸿迪, 孟磊, 宋国学, 代华五. 2010. 西准噶尔谢米斯台铜矿的发现及意义.
孙勇,李永军,杨高学,易善鑫,张胜龙,孙羽,王军年.2015.西准噶尔谢米斯台山西缘中志留世火山岩LA-ICP-MS锆石U-Pb测年及构造意义.
王金荣, 贾志磊, 李泰德, 马锦龙, 赵磊, 何彦彬, 张伟, 刘昆鑫. 2013. 新疆西准噶尔发现早泥盆世埃达克岩: 大地构造及成矿意义.
魏荣珠, 董挨管, 李嵩, 王瑞军, 柴金钟. 2011. 西准噶尔玛依勒山一带早泥盆世生物化石的发现及其意义.
翁凯, 徐学义, 马中平, 孙吉明, 张涛. 2013. 西准噶尔吾尔喀什尔地区泥盆纪火山岩锆石U-Pb年代学和地球化学研究.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约.
袁洪林, 吴福元, 高山, 柳小明, 徐平, 孙德有. 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.
张胜龙, 李永军, 焦光磊, 易善鑫, 孙勇, 杨洋, 王军年. 2014. 西准噶尔吾尔喀什尔山库鲁木苏岩基的解体及地质意义.
朱永峰, 徐新. 2006. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩.
纵瑞文, 龚一鸣, 王国灿, 王志宏, 阮佳萍, 范若颖. 2012. 西准噶尔孟布拉克地区晚泥盆世植物化石的发现及其地质意义.

我要回帖

更多关于 honma高尔夫官网 的文章

 

随机推荐